UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA (Mestrado)

ADEVAL LINO FERREIRA

Estabilização uniforme da equação da onda sobre uma superfície compacta com dissipação localmente distribuída

Maringá - PR

ADEVAL LINO FERREIRA

Estabilização uniforme da equação da onda sobre uma superfície compacta com dissipação localmente distribuída

Dissertação submetida ao corpo docente do Programa de Pós-Graduação em Matemática da Universidade Estadual de Maringá - UEM-PR, como parte dos requisitos necessários à obtenção do grau de Mestre.

Orientador: Marcelo Moreira Cavalcanti.

Maringá - PR

Estabilização Uniforme da Equação da Onda Sobre Uma Superfície Compacta com Dissipação Localmente Distribuída

Adeval Lino Ferreira

Tese submetida ao corpo docente do Programa de Pós-Graduação em Matemática da Universidade Estadual de Maringá - UEM-PR, como parte dos requisitos necessários à obtenção do grau de Mestre.

Aprovada por:

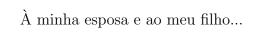
Prof.Dr. Marcelo Moreira Cavalcanti - UEM (Orientador)

Prof.Dr. Ryuichi Fukuoka -UEM

Prof.Dr. Olímpio Hiroshi Miyagaki - UFV

Maringá

Fevereiro, 2009



Agradecimentos

Agradeço primeiramente a Deus, pois sem ele nada seria possível.

Aos meus pais, que com muito sacrifício me propiciaram a chance de estudar.

Agradeço também a minha esposa por ter sido paciente e compreensível nas horas difíceis.

Agradeço a todos os meus professores, desde o ensino fundamental até o mestrado. Em geral a todos do Departamento de Pós-graduação em Matemática, que direta ou indiretamente contribuíram para elaboração deste trabalho.

Agradeço principalmente ao meu orientador prof.Dr. Marcelo Moreira Cavalcanti, por ser uma pessoa íntegra, humilde e acima de tudo bem humorada, agradeço também à prof(a) Valéria, que é uma pessoa excepcional. O conhecimento que adquiri com prof. Marcelo é algo valioso que desfrutarei pelo resto da vida.

Por fim, agradeço ao CNPq, pelo apoio financeiro, sem o qual seria impossível dedicar-se integralmente à jornada de estudos.

Adeval Lino Ferreira.

"O estudo, a busca da verdade e da beleza são domínios em que nos é consentido sermos crianças por toda a vida."

Albert Einstein.

Resumo

Este trabalho está relacionado com o estudo da equação da onda em superfícies compactas com dissipação localmente distribuída, descrita por

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u + a(x)g(u_t) = 0 & \text{em} \quad \mathcal{M} \times (0, \infty) \\ u(x, 0) = u^0(x) , \quad u'(x, 0) = u^1(x) \end{cases}$$

onde $\mathcal{M} \subset \mathbb{R}^3$ é uma superfície compacta orientada sem fronteira (de classe C^3), tal que $\mathcal{M} = \mathcal{M}_0 \cup \mathcal{M}_1$ onde $\mathcal{M}_1 = \{x \in \mathcal{M} ; m(x) \cdot \nu(x) > 0\}$ e $\mathcal{M}_0 = \mathcal{M} \setminus \mathcal{M}_1$, aqui $m(x) := x - x^0, x^0 \in \mathbb{R}^3$, e ν é o campo de vetores normais unitários exteriores de \mathcal{M} .

Abstract

This work is concerned with the study of wave equation on compact surfaces and locally distributed damping, described by

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u + a(x)g(u_t) = 0 & \text{em} \quad \mathcal{M} \times (0, \infty) \\ u(x, 0) = u^0(x) , u'(x, 0) = u^1(x) \end{cases}$$

where $\mathcal{M} \subset \mathbb{R}^3$ is a smooth (of class C^3) oriented embedded compact surface without boundary, such that $\mathcal{M} = \mathcal{M}_0 \cup \mathcal{M}_1$, where $\mathcal{M}_1 = \{x \in \mathcal{M} : m(x) \cdot \nu(x) > 0\}$ and $\mathcal{M}_0 = \mathcal{M} \setminus \mathcal{M}_1$, here, $m(x) := x - x^0$, $x^0 \in \mathbb{R}^3$, and ν is the exterior unit normal vector field of \mathcal{M} .

Sumário

Introdução					
1	Preliminares				
	1.1	Distri	buições e Espaços Funcionais	6	
		1.1.1	Noção de Derivada Fraca	6	
		1.1.2	Os Espaços $L^p(\Omega)$	8	
		1.1.3	Espaços de Sobolev	11	
1.2 Espaços Funcionais à Valores Vetoriais		os Funcionais à Valores Vetoriais	15		
		1.2.1	O Espaço $W(a,b;V,V')$	19	
		1.2.2	Funções Escalarmente Contínuas	24	
	1.3	1.3 Teoria de Traço		24	
		1.3.1	Traço em $L^2(0,T;H^m(\Omega))$	26	
		1.3.2	Traço em $H^{-1}(0,T;H^m(\Omega))$	27	
	1.4	.4 Teorema de Carathéodory		29	
	1.5	5 Resultados Auxiliares		30	
	1.6	Teoria	Espectral	34	
	1.7	Opera	dores Maximais Monótonos - O Teorema de Hille Yosida	35	
	1.8	Semig	rupos	37	

	1.9	Equaç	ões Não Lineares	41
	1.10	Um Re	epasso A Geometria Diferencial	42
		1.10.1	Superfície Regular	42
		1.10.2	O Gradiente	46
		1.10.3	O Divergente	47
		1.10.4	O Operador Laplace-Beltrami	48
2	Exis	stência	e Unicidade de Soluções	59
	2.1	Proble	ema Aproximado Para o Caso Linear	59
		2.1.1	Estimativas a Priori	62
		2.1.2	Dados Iniciais	70
		2.1.3	Unicidade da Solução Regular	72
	2.2	Soluçõ	es Fracas	73
		2.2.1	Existência de Solução	73
		2.2.2	Unicidade da Solução Fraca	76
	2.3	Existê	ncia e Unicidade Para o Problema Não Linear	76
		2.3.1	Problema Aproximado	78
		2.3.2	Estimativas à Priori	83
		2.3.3	Dados Iniciais	94
		2.3.4	Unicidade de Solução Regular	95
		2.3.5	Soluções Fracas para o Problema Não-Linear	96
		2.3.6	Unicidade de Solução Fraca	100
	2.4	Existê	ncia de Soluções via teoria de Semigrupos	100
		2.4.1	Existência e unicidade e soluções regulares em $[0, T_{max})$	100

vi

		2.4.2	Extensão da solução de zero ao infinito	105				
		2.4.3	Unicidade da Solução Regular	106				
		2.4.4	Existência e unicidade de Soluções Fracas como Limite de Soluções					
			Regulares	106				
	2.5 Apêndice			110				
		2.5.1	Identidade da Energia	110				
3	3 Resultado de Estabilidade							
	3.1	Hipóte	eses Geométricas Essenciais	126				
		3.1.1	Resultado Principal	127				
3.2 Prova do Teorema 3.1				128				
		3.2.1	Preliminares	128				
		3.2.2	Conclusão do Teorema 3.1	145				
3.3 Computações Efetivas das Taxas de Decaimento dadas pelo		utações Efetivas das Taxas de Decaimento dadas pelo pelo Teorema						
		3.1 .		149				
	3.4	Apênd	lice	152				
		3.4.1	Cut-off Intrínseco	152				
Bi	Bibliografia 15							

Introdução

Neste trabalho consideramos o problema da equação da onda em superfícies compactas com dissipação localmente distribuída. Para tanto, consideramos \mathcal{M} uma superfície compacta, mergulhada, orientada sem fronteira no \mathbb{R}^3 , (de classe C^3), com $\mathcal{M} = \mathcal{M}_0 \cup \mathcal{M}_1$, onde

$$\mathcal{M}_1 = \{x \in \mathcal{M} : m(x) \cdot \nu(x) > 0\}$$
 e $\mathcal{M}_0 = \mathcal{M} \setminus \mathcal{M}_1$

Aqui, $m(x) := x - x^0$, $(x^0 \in \mathbb{R}^3; \text{ fixado})$ e ν é o campo de vetores normais unitários exteriores de \mathcal{M} . Este trabalho é voltado para o estudo da estabilização uniforme das soluções do seguinte problema dissipativo

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u + a(x)g(u_t) = 0 & \text{em} \quad \mathcal{M} \times (0, \infty) \\ u(x, 0) = u^0(x) , u'(x, 0) = u^1(x) & x \in \mathcal{M} \end{cases}$$
 (1)

onde $a(x) \ge a_0 > 0$ sobre um subconjunto aberto \mathcal{M}_* de \mathcal{M} e além disso g é uma função monótona crescente.

A estabilidade para a equação da onda

$$u_{tt} - \Delta u + f(u) + a(x)g(u_t) = 0$$
 em $\Omega \times \mathbb{R}_+$

onde Ω é um domínio limitado em \mathbb{R}^n , foi estudada por um longo tempo por muitos autores. Quando o termo dissipativo depende da velocidade linearmente, ou seja, temos $a(x)u_t$ no lugar de $a(x)g(u_t)$, Zuazua [47] provou que a energia decai exponencialmente se a região ω onde se localiza a dissipação, isto é, aquela onde $a(x) \geq a_0 > 0$, contém uma vizinhança da fronteira $\partial\Omega$ de Ω , ou pelo menos contém uma vizinhança ω * de uma

parte particular, dada por

$$\{x \in \partial\Omega; (x - x^0) \cdot \nu(x) \ge 0\}$$

onde ν representa o vetor normal unitário exterior a Ω e $x^0 \in \mathbb{R}^n$. No mesmo sentido, mas quando f = 0, é importante mencionar o trabalho devido a Rauch e Taylor [42] e, subsequentemente, os resultados de Bardos, Lebeau e Rauch [34], baseados na análise microlocal, que assegura uma condição necessária e suficiente para obter o decaimento exponencial, a saber, a região dissipativa, deve satisfazer a condição de controle geométrico. Um exemplo clássico de um aberto ω satisfazendo esta condição é quando ω é uma vizinhança da fronteira. Mais tarde, outra vez considerando f = 0, Nakao [30] estende o resultado de Zuazua [47], tratando primeiramente o caso de uma equação linear degenerada, e então o caso de uma dissipação não-linear $\rho(x, u_t)$, como geralmente, a função ρ tem um crescimento polinomial perto da origem. Martinez [40] melhorou os resultados precedentes, mencionados acima, em o qual se refere ao assunto linear da equação da onda a uma dissipação não-linear $\rho(x, u_t)$, evitando o crescimento polinomial da função $\rho(x,s)$ em uma vizinhança da origem. Sua prova é baseada em parte na técnica dos multiplicadores desenvolvida por Liu [39], combinando com as desigualdades integrais não-lineares para mostrar que a energia do sistema decai a zero com uma estimativa precisa para a taxa de decaimento se a região de dissipação satisfaz algumas circunstâncias geométricas. Mais recentemente, e ainda considerando f = 0, Alabau-Boussouira [2] estendeu os resultados de Martinez [40], mostrando taxas de decaimento ótimas de energia. Além disso, gostaríamos de mencionar o trabalho mais recente neste sentido devido a D.Toundykov [44] que apresenta taxas de decaimento ótimas para soluções de uma equação da onda semilinear com dissipação localizada no interior e condição de fronteira tipo Neumann.

Uma questão natural levanta-se no contexto da equação da onda em uma superfície compacta. Seria possível estabilizar o sistema considerando uma dissipação localizada que atua em uma parte da superfície? No caso afirmativo, quais seriam as imposições geométricas que teríamos que supor sobre a superfície? Quanto ao termo de dissipação

atuar em toda superfície, o problema foi estudado por Cavalcanti e Domingos Cavalcanti em [10] e também por Andrade e outros em [3, 4] no contexto do problema viscoelastico. Não havia na literatura até o presente, um trabalho a respeito da equação da onda não-linear em superfícies compactas, quando o termo de dissipação atua em uma parcela \mathcal{M}_* contida estritamente em \mathcal{M} . Para o caso linear, podemos mencionar os trabalhos devido a Rauch e Taylor [42], Hitrik [37] e, mais recentemente, Christianson [35].

O principal objetivo desta dissertação é exatamente provar o problema acima mencionado quando a porção de \mathcal{M} , onde a dissipação é efetiva é estrategicamente escolhida. Para $i=1,\ldots,k$, assuma que existem subconjuntos abertos $\mathcal{M}_{0i}\subset\mathcal{M}_0$ de \mathcal{M} com fronteira regular $\partial\mathcal{M}_{0i}$ tais que \mathcal{M}_{0i} são umbílicos, ou, mais geralmente, que as curvaturas principais k_1 e k_2 satisfaçam $|k_1(x)-k_2(x)|<\varepsilon_i$ (ε_i considerado suficientemente pequeno) para todo $x\in\mathcal{M}_{0i}$. Além disso, suponha que a curvatura média H de cada \mathcal{M}_{0i} é não-positiva (i.e. $H\leq 0$ sobre \mathcal{M}_{0i} para cada $i=1,\ldots,k$) e que a dissipação é efetiva em um subconjunto aberto $\mathcal{M}_*\subset\mathcal{M}$ que contém $\mathcal{M}\setminus\bigcup_{i=1}^k\mathcal{M}_{0i}$, conforme ilustra a figura 1 abaixo.

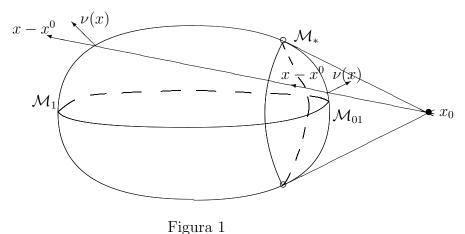


Figura 1: O observador está localizado em x_0 . O subconjunto \mathcal{M}_0 é a parte "visível" de \mathcal{M} e \mathcal{M}_1 é seu complemento. O subconjunto $M_* \supset M \setminus \bigcup_{i=1}^k \mathcal{M}_{0i} = \mathcal{M} \setminus \mathcal{M}_{01}$ é um conjunto aberto que contém $\mathcal{M} \setminus \bigcup_{i=1}^k \mathcal{M}_{0i}$ e a dissipação é efetiva aí.

Outro exemplos de superfícies compactas sem bordo que podem ficar livres de efeitos dissipativos são aquelas que contem partes cônicas em sua composição. Mais precisamente, o efeito dissipativo deve conter estritamente o complementar da parte

cônica, conforme ilustra a figura 2 abaixo.

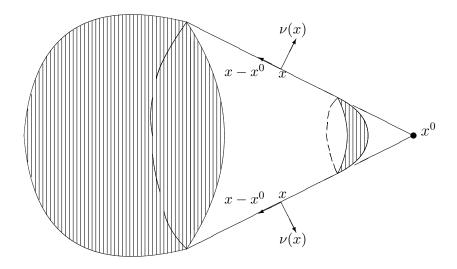


Figura 2: A parte em negrito representa a área dissipativa enquanto a parte branca não há dissipação.

O problema acima foi solucionado recentemente em um trabalho de autoria de Cavalcanti, Domingos Cavalcanti, Fukuoka e Soriano [8] e o objetivo desta dissertação é apresentar de forma didática o conteúdo do artigo referido.

A estratégia utilizada para provar a conjectura acima é basicamente usar a técnica dos multiplicadores e campos, conforme em Lions [19] combinado com novos ingredientes que serão esclarecidos no decorrer da dissertação. Com efeito, a maior dificuldade e novidade nesse tipo de problema sobre superfícies é como lidar (ou interpretar) os termos novos que surgem nos cálculos que provem da estrutura geométrica de \mathcal{M} . Além disso, esta técnica pode ser naturalmente estendida para equações semilineares onde a função semi-linear f(s) é assumida ser super-linear conforme o trabalho de Triggiani e Yao [43]. Para finalizar, gostaríamos de enfatizar que as demonstrações dos clássicos [42, 34, 37], baseados em análise microlocal, não se estendem ao problema não linear (1). Mais ainda, fazendo o uso de argumentos utilizados por Lasiecka and Tataru [18] obtemos itaxas ótimas de decaimento da energia. Tais taxas são consideradas ótimas, uma vez que quando explicitadas (conforme em Cavalcanti, Domingos Cavalcanti and Lasiecka [9]),

elas são as mesmas daquelas taxas ótimas provadas no trabalho de Alabau-Boussouira [2] ou de Toudykov [44].

Preliminares

1.1 Distribuições e Espaços Funcionais

1.1.1 Noção de Derivada Fraca

No estudo de problemas descritos pelas equações diferenciais parciais cujos dados iniciais não são regulares o suficiente para possuírem derivada no sentido clássico, faz-se necessária a introdução de um novo conceito de derivada.

Para entendermos tal conceito necessitamos de algumas definições:

1º) Espaço das funções testes

Dados $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n$ e $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, representaremos por D^{α} o operador derivação de ordem α definido por

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}},$$

onde
$$|\alpha| = \sum_{i=1}^{n} \alpha_i$$
. Se $\alpha = (0, 0, \dots, 0)$, define-se $D^{\alpha}u = u$.

Seja Ω um aberto do \mathbb{R}^n . Denotaremos por $C_0^{\infty}(\Omega)$ o conjunto das funções φ : $\Omega \to \mathbb{K}$ (onde $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) que são infinitamente diferenciáveis em Ω e que tem suporte compacto, onde suporte φ é o fecho do conjunto $\{x \in \Omega; \varphi(x) \neq 0\}$ em Ω , ou seja, $supp(\varphi) = \overline{\{x \in \Omega; \varphi(x) \neq 0\}}^{\Omega}$.

Dizemos que uma seqüência $\{\varphi_{\nu}\}\subset C_0^{\infty}(\Omega)$ converge para zero, denotando $\varphi_{\nu}\to 0$, se, e somente se, existe um subconjunto compacto K de Ω , tal que:

- i) $supp(\varphi_{\nu}) \subset K, \forall \nu \in \mathbb{N};$
- ii) $D^{\alpha}\varphi_{\nu} \to 0$ uniformemente sobre $K, \forall \alpha \in \mathbb{N}^n$.

Dizemos que uma seqüência $\{\varphi_{\nu}\}\subset C_0^{\infty}(\Omega)$ converge para $\varphi\subset C_0^{\infty}(\Omega)$ quando a seqüência $\{\varphi_{\nu}-\varphi\}$ converge para zero no sentido acima definido.

O espaço $C_0^{\infty}(\Omega)$, munido desta noção de convergência, é denominado espaço das funções testes, e denotado por $\mathcal{D}(\Omega)$.

2º) Distribuição sobre um aberto $\Omega \subset \mathbb{R}^n$

Definimos como distribuição sobre Ω a toda forma linear e contínua em $\mathcal{D}(\Omega)$. O conjunto de todas as distribuições sobre Ω é um espaço vetorial, o qual representa-se por $\mathcal{D}'(\Omega)$, chamado espaço das distribuições sobre Ω , munido da seguinte noção de convergência: Seja (T_{ν}) uma sucessão em $\mathcal{D}'(\Omega)$ e $T \in \mathcal{D}'(\Omega)$. Diremos que $T_{\nu} \to T$ em $\mathcal{D}'(\Omega)$ se a seqüência numérica $\{\langle T_{\nu}, \varphi \rangle\}$ converge para $\langle T, \varphi \rangle$ em $\mathbb{R}, \forall \varphi \in \mathcal{D}(\Omega)$.

3°) Denotaremos por $L^1_{loc}(\Omega)$ o espaço das (classes de) funções $u:\Omega\to\mathbb{K}$ tais que |u| é integrável no sentido de Lebesgue sobre cada compacto K de Ω .

De posse destas definições estamos aptos a entender este novo conceito de derivada. S. Sobolev introduziu, em meados de 1936, uma noção global de derivada a qual denominouse derivada fraca, cuja construção dar-se-á a seguir:

Sejam u, v definidas num aberto limitado Ω do \mathbb{R}^n , cuja fronteira Γ é regular. Suponhamos que u e v possuam derivadas parciais contínuas em $\overline{\Omega} = \Omega \cup \Gamma$. Se u ou v se anula sobre Γ , obtemos do lema de Gauss que

$$\int_{\Omega} u \frac{\partial v}{\partial x_k} dx = -\int_{\Omega} v \frac{\partial u}{\partial x_k} dx.$$

A expressão anterior motivou a derivada fraca dada por Sobolev: Uma função $u \in L^1_{loc}(\Omega) \text{ \'e deriv\'avel no sentido fraco em } \Omega, \text{ quando existe uma função}$ $v \in L^1_{loc}(\Omega) \text{ tal que}$

$$\int_{\Omega} u(x) \frac{\partial \varphi(x)}{\partial x_k} dx = -\int_{\Omega} v(x) \varphi(x) dx, \quad \text{para toda } \varphi \in \mathcal{D}(\Omega).$$

Embora, tal conceito de derivada tenha sido um marco na evolução do conceito de solução de uma equação diferencial, ele apresenta uma grave imperfeição no fato que nem toda função de $L^1_{loc}(\Omega)$ possui derivada neste sentido. No intuito de sanar este tipo de problema, Laurent Schwartz, em meados de 1945, introduziu a noção de derivada no sentido das distribuições, a qual generaliza a noção de derivada formulada por Sobolev, como segue:

Seja T uma distribuição sobre Ω e $\alpha \in \mathbb{N}^n$. A derivada de ordem α de T, no sentido das distribuições, é definida por:

$$\langle D^{\alpha}T, \varphi \rangle = (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle; \forall \varphi \in \mathcal{D}(\Omega).$$

Verifica-se que $D^{\alpha}T$ é ainda uma distribuição e que o operador $D^{\alpha}: \mathcal{D}'(\Omega) \to \mathcal{D}'(\Omega)$, tal que a cada T associa-se $D^{\alpha}T$, é linear e contínuo.

1.1.2 Os Espaços $L^p(\Omega)$

Seja Ω um aberto do \mathbb{R}^n . Representaremos por $L^p(\Omega)$, $1 \leq p \leq +\infty$, o espaço vetorial das (classes de) funções definidas em Ω com valores em \mathbb{K} tais que $|u|^p$ é integrável no sentido de Lebesgue em Ω .

Teorema 1.1. (Teorema da Convergência Dominada de Lebesgue) - $Seja (u_{\nu})_{\nu \in \mathbb{N}}$ uma seqüência de funções integráveis num aberto $\Omega \subset \mathbb{R}^n$, convergente quase sempre para uma função u. Se existir uma função $u_0 \in L^1(\Omega)$ tal que $|u_{\nu}| \leq u_0$ quase sempre, $\forall \nu \in \mathbb{N}$ então u é integrável e tem-se

$$\int_{\Omega} u = \lim_{\nu \to \infty} \int_{\Omega} u_{\nu}.$$

Demonstração: Ver [22].

O espaço $L^p(\Omega)$ munido da norma

$$||u||_{L^p(\Omega)} = \left(\int_{\Omega} |u(x)|^p dx\right)^{\frac{1}{p}}, \text{ para } 1 \le p < +\infty$$

е

$$||u||_{L^{\infty}} = \sup_{x \in \Omega} \operatorname{ess}|u(x)|, \ para \ p = +\infty,$$

é um espaço de Banach.

No caso $p=2, L^2(\Omega)$ é um espaço de Hilbert.

Proposição 1.2. (Desigualdade de Young) - Sejam 1 < $p,q < \infty$ tal que $\frac{1}{p} + \frac{1}{q} = 1$ e a,b > 0. Então

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Demonstração: Ver [5].

Proposição 1.3. (Desigualdade de Minkowski) - Sejam $1 \leq p \leq \infty$ e f,g em $L^p(\Omega),\ ent \tilde{ao}$

$$||f + g||_{L^p(\Omega)} \le ||f||_{L^p(\Omega)} + ||g||_{L^p(\Omega)}.$$

Demonstração: Ver [22].

Proposição 1.4. (Desigualdade de Hölder) - Sejam $u \in L^p(\Omega)$ e $v \in L^q(\Omega)$ com $1 \le p \le \infty$ e $\frac{1}{p} + \frac{1}{q} = 1$. Então $uv \in L^1(\Omega)$ e temos a desigualdade

$$\int_{\Omega} |uv| \le ||u||_{L^p(\Omega)} ||v||_{L^q(\Omega)}.$$

Demonstração: Ver [5].

Segue como corolário da proposição anteiror o seguinte resultado:

Corolário 1.5. (Desigualdade de Hölder generalizada) - Sejam f_1, f_2, \ldots, f_k funções, tais que $f_i \in L^{p_i}(\Omega), \ p_i \geq 1, \ 1 \leq i \leq k, \ onde \ \frac{1}{p_1} + \frac{1}{p_2} + \ldots + \frac{1}{p_k} = \frac{1}{p} \ e \ \frac{1}{p} \leq 1.$ Então o produto $f = f_1 f_2 \ldots f_k \in L^p(\Omega)$ e

$$||f||_{L^p(\Omega)} \le ||f_1||_{L^{p_1}(\Omega)} ||f_2||_{L^{p_2}(\Omega)} \dots ||f_k||_{L^{p_k}(\Omega)}.$$

Proposição 1.6. (Desigualdade de Interpolação) - Se $u \in L^p(\Omega) \cap L^q(\Omega)$ com $1 \le p \le q \le \infty$ então $u \in L^p(\Omega)$ para todo $p \le r \le q$ e se tem a desigualdade

$$||u||_{L^r(\Omega)} \le ||u||_{L^p(\Omega)}^{\theta} ||u||_{L^q(\Omega)}^{1-\theta}$$

 $onde \ 0 \leq \theta \leq 1 \ verifica \ \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$

Demonstração: Ver [24].

Lema 1.7. (Desigualdade de Jensen) - Seja B um hipercubo do \mathbb{R}^n , então para toda função côncava F e toda função integrável $g \in L^1(B)$, teremos

$$F\left(\frac{1}{med(B)}\int_{B}g(x)dx\right) \ge \frac{1}{med(B)}\int_{B}F(g(x))dx$$

Demonstração: Ver [32].

Além dos resultados acima, temos que:

- i) $L^p(\Omega)$ é reflexivo para todo 1 ;
- ii) $L^p(\Omega)$ é separável para todo $1 \le p < +\infty$;
- iii) $\mathcal{D}(\Omega)$ tem imersão contínua e densa em $L^p(\Omega)$ para todo $1 \leq p < +\infty$;
- iv) Se (f_n) é uma seqüência em $L^p(\Omega)$ e $f \in L^p(\Omega)$ são tais que $||f_n f||_{L^p(\Omega)} \to 0$ então existe uma subseqüência (f_{n_k}) tal que $f_{n_k}(x) \to f(x)$ quase sempre em Ω .

Proposição 1.8. (Teorema da Representação de Riesz) - Sejam $1 , <math>\varphi \in (L^p(\Omega))^{'}$ com $\frac{1}{q} + \frac{1}{p} = 1$. Então existe uma única $u \in L^q(\Omega)$, tal que

$$\langle \varphi, v \rangle = \int_{\Omega} u(x)v(x)dx, \ \forall v \in L^p(\Omega) \ e \ \|u\|_{L^q(\Omega)} = \|\varphi\|_{(L^p(\Omega))'}.$$

Demonstração: Ver [5].

Quando $p = \infty$, temos:

Proposição 1.9. Seja $\varphi \in (L^1(\Omega))^{'}$, então existe uma única $u \in L^{\infty}(\Omega)$ tal que

$$\langle \varphi, v \rangle = \int_{\Omega} u(x)v(x)dx, \ \forall v \in L^1(\Omega) \ e \ \|u\|_{L^{\infty}(\Omega)} = \|\varphi\|_{(L^1(\Omega))'}.$$

Demonstração: Ver [5].

Denotaremos por $L^p_{loc}(\Omega)$, $1 \leq p < +\infty$ o espaço das (classes de) funções $u: \Omega \to \mathbb{K}$ tais que $|u|^p$ é integrável no sentido de Lebesgue sobre cada compacto K de Ω munido da seguinte noção de convergência: Uma sucessão u_{ν} converge para $u \in L^p_{loc}(\Omega)$ se para cada compacto K de Ω tem-se:

$$p_K(u_{\nu} - u) = \left(\int_K |u_{\nu}(x) - u(x)|^p dx \right)^{\frac{1}{p}} \to 0.$$

Proposição 1.10. (Lema de Du Bois Raymond) - Seja $u \in L^1_{loc}(\Omega)$, então $T_u = 0$ se, e somente se, u = 0 quase sempre em Ω , onde T_u é a distribuição definida por $\langle T_u, \varphi \rangle = \int_{\Omega} u(x)\varphi(x)dx$, $\forall \varphi \in \mathcal{D}(\Omega)$.

Demonstração: Ver [23].

Desta proposição tem-se que T_u fica univocamente determinada por $u \in L^1_{loc}(\Omega)$, isto é, se $u, v \in L^1_{loc}(\Omega)$, então $T_u = T_v$ se, e somente se, u = v quase sempre em Ω .

Proposição 1.11. Seja $(u_{\nu})_{\nu \in \mathbb{N}} \subset L^{p}_{loc}(\Omega)$, $1 \leq p < +\infty$, tal que $u_{\nu} \to u$ em $L^{p}_{loc}(\Omega)$, então $u_{\nu} \to u$ em $\mathcal{D}'(\Omega)$.

Demonstração: Ver [23].

1.1.3 Espaços de Sobolev

Seja Ω um aberto do \mathbb{R}^n , $1 \leq p \leq +\infty$ e $m \in \mathbb{N}$. Se $u \in L^p(\Omega)$ sabemos que u possui derivadas de todas as ordens no sentido das distribuições, mas não é verdade, em geral, que $D^{\alpha}u$ seja uma distribuição definida por uma função de $L^p(\Omega)$. Quando $D^{\alpha}u$ é definida por uma função de $L^p(\Omega)$ defini-se um novo espaço denominado espaço de Sobolev. Representa-se por $W^{m,p}(\Omega)$ o espaço vetorial de todas as funções $u \in L^p(\Omega)$,

tais que para todo $|\alpha| \leq m$, $D^{\alpha}u$ pertence à $L^{p}(\Omega)$, sendo $D^{\alpha}u$ a derivada no sentido das distribuições.

O espaço $W^{m,p}(\Omega)$ munido da norma

$$||u||_{m,p} = \left(\sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}u|^p dx\right)^{\frac{1}{p}}, \text{ para } 1 \le p < \infty,$$

е

$$||u||_{m,\infty} = \sum_{|\alpha| \le m} \sup_{x \in \Omega} \operatorname{ess}|D^{\alpha}u(x)|, \text{ para } p = \infty$$

é um espaço de Banach.

Representa-se $W^{m,2}(\Omega)=H^m(\Omega)$ devido a sua estrutura hilbertiana, ou seja, os espaços $H^m(\Omega)$ são espaços de Hilbert.

É sabido que $C_0^{\infty}(\Omega)$ é denso em $L^p(\Omega)$, mas não é verdade que $C_0^{\infty}(\Omega)$ é denso em $W^{m,p}(\Omega)$ para $m \geq 1$. Motivado por esta razão define-se o espaço $W_0^{m,p}(\Omega)$ como sendo o fecho de $C_0^{\infty}(\Omega)$ em $W^{m,p}(\Omega)$, isto é,

$$\overline{C_0^{\infty}(\Omega)}^{W^{m,p}(\Omega)} = W_0^{m,p}(\Omega).$$

Observação: Quando Ω é um aberto limitado em alguma direção x_i de \mathbb{R}^n e $1 \leq p < \infty \text{ consideramos } W_0^{m,p}(\Omega) \text{ munido da norma}$

$$||u|| = \left(\sum_{|\alpha|=m} \int_{\Omega} |D^{\alpha}u(x)|^p dx\right)^{\frac{1}{p}}$$

que é equivalente a norma $||u||_{m,p}$.

Suponha que $1 \leq p < \infty$ e $1 < q \leq \infty$ tal que $\frac{1}{p} + \frac{1}{q} = 1$. Representa-se por $W^{-m,q}(\Omega)$ o dual topológico de $W_0^{m,p}(\Omega)$. O dual topológico de $H_0^m(\Omega)$ denota-se por $H^{-m}(\Omega)$.

Prosseguindo nas definições dos espaços que utilizaremos ao longo deste trabalho, vamos caracterizar os espaços $H^s(\Omega),\ s\in\mathbb{R}$. Para isso consideremos $S=\{\varphi\in C^\infty(\mathbb{R}^n);\ \lim_{\|x\|\to\infty}p(x)D^\alpha\varphi(x)=0,\ \text{para todo polinômio}\ p\ \text{de }n\ \text{variáveis reais}\ \text{e}\ \alpha\in\mathbb{N}^n\}$ o espaço

das funções rapidamente decrescente no infinito, S' o dual topológico de S e para cada função $u \in L^1(\mathbb{R}^n)$ a transformada de Fourier de u definida por

$$\hat{u}(x) = (2\pi)^{\frac{-n}{2}} \int_{\mathbb{R}^n} e^{-i(x,y)} u(y) dy,$$

onde
$$(x, y) = \sum_{j=1}^{n} x_{j} y_{j}$$
.

Definimos, para todo $s \in \mathbb{R}$

$$H^{s}(\mathbb{R}^{n}) = \left\{ u \in S'; (1 + ||x||^{2})^{\frac{s}{2}} \hat{u} \in L^{2}(\mathbb{R}^{n}) \right\}.$$

Além disso, se $s \geq 0$ temos que $H^{-s}(\mathbb{R}^n) = (H^s(\mathbb{R}^n))^{'}$ e $H^s(\mathbb{R}^n) \hookrightarrow L^2(\mathbb{R}^n) \hookrightarrow H^{-s}(\mathbb{R}^n)$.

Diremos que o aberto Ω é bem regular se sua fronteira Γ é uma variedade de classe C^{∞} de dimensão $n-1, \Omega$ estando localmente do mesmo lado de Γ .

Seja Ω um aberto bem regular do \mathbb{R}^n , ou o semi-espaço \mathbb{R}^n_+ . Consideremos a aplicação:

$$r_{\Omega}: L^2(\mathbb{R}^n) \to L^2(\Omega)$$

 $u \mapsto u|_{\Omega}$

que leva u na sua restrição a Ω . Assim, para $s \geq 0$ temos que

$$H^s(\Omega) = \{v|_{\Omega}; v \in H^s(\mathbb{R}^n)\}$$

e

$$H^{-s}(\Omega) = (H_0^s(\Omega))'$$
 onde $H_0^s(\Omega) = \overline{\mathcal{D}(\Omega)}^{H^s(\Omega)}$.

Teorema 1.12. (Imersão de Sobolev) - Seja Ω um aberto do \mathbb{R}^n , então

$$H^m(\Omega) \hookrightarrow C^k(\overline{\Omega}), \text{ se } m > \frac{n}{2} + k.$$

Demonstração: Ver [21].

Proposição 1.13. Sejam Ω um conjunto aberto do \mathbb{R}^n , de classe C^m , com fronteira limitada e m um inteiro tal que $m \geq 1$, e $1 \leq p < \infty$. Então temos as segintes imersões contínuas:

$$se \frac{1}{p} - \frac{m}{n} > 0 \ ent \tilde{a}o \ W^{m,p}(\Omega) \hookrightarrow L^{q}(\Omega), \ onde \ \frac{1}{q} = \frac{1}{p} - \frac{m}{n},$$

$$se \frac{1}{p} - \frac{m}{n} = 0 \ ent \tilde{a}o \ W^{m,p}(\Omega) \hookrightarrow L^{q}(\Omega), \ \forall \ q \in [p, +\infty[,$$

$$se \ \frac{1}{p} - \frac{m}{n} < 0 \ ent \tilde{a}o \ W^{m,p}(\Omega) \hookrightarrow L^{\infty}(\Omega).$$

Demonstração: Ver [11].

Teorema 1.14. (Teorema de Rellich Kondrachov) - Seja Ω um subconjunto aberto limitado do \mathbb{R}^n , Ω de classe C^1 e $1 \leq p \leq \infty$. Então

$$\begin{split} se \ p < n \ ent \~ao \ W^{1,p}(\Omega) & \stackrel{c}{\hookrightarrow} L^q(\Omega), \ \forall \, q \in [1,p^*], \ onde \ \frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}, \\ se \ p = n \ ent \~ao \ W^{1,p}(\Omega) & \stackrel{c}{\hookrightarrow} L^q(\Omega), \ \forall \, q \in [1,+\infty[, \\ \\ se \ p = n \ ent \~ao \ W^{1,p}(\Omega) & \stackrel{c}{\hookrightarrow} C(\overline{\Omega}). \end{split}$$

Demonstração: Ver [11].

Notação: *ċ*→ indica imersão compacta.

Proposição 1.15. (Desigualdade de Sobolev, Gagliardo, Nirenberg) $Se \ 1 \leq p < n, \ então$

$$W^{1,p}(\mathbb{R}^n) \subset L^{p*}(\mathbb{R}^n),$$

onde p^* vem dado por $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}$, existe uma constante C = C(p, n) tal que

$$||u||_{L^{p*}} \le C||\nabla u||_{L^p} \quad \forall \ u \in W^{1,p}(\mathbb{R}^n).$$

Demonstração: Ver [5].

Teorema 1.16. Quando n > 2 temos a inclusão $H^1(\mathbb{R}^n) \hookrightarrow L^{\rho}(\mathbb{R}^n)$ para todo ρ satisfazendo $2 \le \rho \le p$, onde p é dado por: $\frac{1}{p} = \frac{1}{2} - \frac{1}{n}$.

Demonstração: Ver [14].

1.2 Espaços Funcionais à Valores Vetoriais

Nesta seção iremos determinar os espaços em que são levados em conta as variáveis temporal e espacial, o qual é necessário para dar sentido a problemas de evolução.

Para cada $t \in [0, T]$ fixo, interpretamos a função $x \mapsto u(x, t)$ como um elemento do espaço X. Denotaremos este elemento como $u(t) \in X$ com valores no espaço X.

Seja X um espaço de Banach, $a, b \in \mathbb{R}$.

O espaço $L^p(a, b; X)$, $1 \le p < +\infty$, consiste das funções (classes) mensuráveis sobre [a, b] com imagem em X, ou seja as funções $u: (a, b) \to X$, tais que

$$||u||_{L^p(a,b;X)} := \left(\int_a^b ||u(t)||_X^p dt\right)^{\frac{1}{p}} < \infty.$$

O espaço $L^{\infty}(a,b;X)$ consiste das funções (classes) mensuráveis sobre [a,b] com imagem em X, as funções $u:(a,b)\to X$ limitadas quase sempre em (a,b). A norma neste espaço é dada por

$$||u||_{L^{\infty}(a,b;X)} := \sup ess||u(t)||_X.$$

O espaço $C^m([a,b];X)$, $m=0,1,\ldots$, consiste de todas as funções contínuas $u:[a,b]\to X$ que possuem derivadas contínuas até a ordem m sobre [a,b]. A norma é dada por

$$||u|| := \sum_{i=0}^{m} \max_{t \in [a,b]} |u^{(i)}(t)|.$$

Vejamos algumas propriedades desses espaços, as quais podem ser encontradas em [45]

Proposição 1.17. Sejam $m=0,1,\ldots,\ e\ 1\leq p<+\infty,\ X\ e\ Y\ espaços\ de\ Banach.$

- (a) $C^m([a,b];X)$ é um espaço de Banach sobre \mathbb{K} .
- (b) $L^p(a,b;X)$, $1 \le p < +\infty$ e $L^\infty(a,b;X)$, são espaços de Banach sobre \mathbb{K} .
- (c) O conjunto de todas as funções de grau é denso em $L^p(a,b;X)$.
- (d)C([a,b];X) é denso em $L^p(a,b;X)$ e a imersão $C([a,b];X) \hookrightarrow L^p(a,b;X)$ é contínua.
- (e) Se X é um espaço de Hilbert com produto escalar $(.,.)_x$, então $L^2(a,b;X)$ é também

um espaço de Hilbert com produto escalar

$$(u,v)_{L^2(a,b;X)} := \int_a^b (u(t),v(t))_X dt.$$

- (f) $L^p(a,b;X)$ é separável, se X for separável e $1 \le p < +\infty$.
- $(g) \ Se \ X \hookrightarrow Y, \ ent \ \tilde{ao} \ L^r(a,b;X) \hookrightarrow L^q(a,b;Y), \ 1 \leq q \leq r \leq +\infty.$

Lembremos que se U e Ψ são dois espaços vetoriais topológicos, temos que $\mathcal{L}(U, \Psi)$ denota o espaço das funções lineares e contínuas de U em Ψ .

O espaço das distribuições sobre (a, b) com imagem em X, será denotado por

$$\mathcal{D}'(a,b;X)$$
.

Logo, $\mathcal{D}'(a,b;X) = \mathcal{L}(\mathcal{D}(a,b);X)$, ou seja, é o conjunto de todas as aplicações lineares e limitadas de $\mathcal{D}(a,b)$ em X. A noção de convergência em $\mathcal{D}'(a,b;X)$: seja $S \in \mathcal{D}'(a,b;X)$ logo $S:\mathcal{D}(a,b)\mapsto X$ é linear e se $\theta_{\mu}\to\theta$ em $\mathcal{D}(a,b)$ então $\langle S,\theta_{\mu}\rangle\to\langle S,\theta\rangle$ em X. Diremos que $S_{\nu}\to S$ em $\mathcal{D}'(a,b;X)$ se $\langle S_{\nu},\theta\rangle\to\langle S,\theta\rangle$ em $X,\forall\theta\in\mathcal{D}(a,b)$. Cada elemento desse conjunto é uma distribuição sobre (a,b) com valores no espaço de Banach X.

A derivada $\frac{dS}{dt}$ para $S \in \mathcal{D}'(a, b; X)$, é definida com um único elemento deste espaço a qual satisfaz,

$$\left\langle \frac{dS}{dt}, \varphi \right\rangle = -\left\langle S, \frac{d\varphi}{dt} \right\rangle \quad \forall \varphi \in \mathcal{D}(a, b).$$

A função $S \mapsto \frac{dS}{dt}$ é uma função contínua de $\mathcal{D}'(a,b;X)$ sobre ele mesmo.

Agora se $f \in L^2(a, b; X)$ definimos $\tilde{f} \in \mathcal{D}'(a, b; X)$ por

$$\langle \tilde{f}, \varphi \rangle = \int_{a}^{b} f(t)\varphi(t)dt \quad \forall \varphi \in \mathcal{D}(a, b)$$

a função $f\mapsto \tilde{f}$ de $L^2(a,b;X)\to \mathcal{D}'(a,b;X)$ é linear e contínua, e ainda é injetor e desta forma identificamos \tilde{f} com f e obtemos

$$L^2(a,b;X) \hookrightarrow \mathcal{D}'(a,b;X)$$

O espaço $L^1_{loc}(a,b;X)$ é o espaço das funções u tal que para todo compacto $K \subset (a,b)$, $\chi_K u$ pertence à $L^1(a,b;X)$, onde χ_K denota a função característica de K.

Definição 1.18. Seja $J \in \mathcal{D}(\mathbb{R})$, tal que $J \geq 0$ e $\int_{\mathbb{R}} J(t)dt = 1$. Dado $\epsilon > 0$, definamos

$$J_{\epsilon} = \frac{1}{\epsilon} J\left(\frac{t}{\epsilon}\right) \quad e \quad (J_{\epsilon} * u)(t) = \int_{\mathbb{R}} J_{\epsilon}(t-s)u(s)ds$$

para as funções u em que o lado direito da última igualdade faz sentido.

Proposição 1.19. Seja u uma função definida sobre \mathbb{R} , que anula-se fora de um intervalo I.

- (a) Se $u \in L^1_{loc}(\mathbb{R}; X)$, então $J_{\epsilon} * u \in C^{\infty}(\mathbb{R}; X)$.
- (b) Se $u \in L^2(\mathbb{R}; X)$, então $J_{\epsilon} * u \in L^2(\mathbb{R}; X)$. Além disso, $||J_{\epsilon} * u||_{L^2(\mathbb{R}; X)} \le ||u||_{L^2(\mathbb{R}; X)}$ $e \lim_{\epsilon \longrightarrow 0^+} ||J_{\epsilon} * u - u||_{L^2(\mathbb{R}; X)} = 0$

Fazendo as devidas adaptações, encontramos a demonstração desta proposição por exemplo em [17]

O espaço dual de $L^p(a,b;X)$. Consideremos $Y=L^p(a,b;X)$. Temos a seguinte relação de dualidade $Y'=L^q(a,b;X')$ com $\frac{1}{p}+\frac{1}{q}=1$ devido ao teorema seguinte.

Teorema 1.20. Seja X um espaço de Banach reflexivo e separável, $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$.

(a) Cada função $v \in L^q(a,b;X')$ corresponde a um único funcional $\overline{v} \in Y'$ dada por

$$\langle \overline{v}, u \rangle = \int_{a}^{b} \langle v(t), u(t) \rangle_{X} dt \quad \forall u \in Y.$$
 (1.1)

Reciprocamente, para cada $\overline{v} \in Y'$ corresponde a exatamente uma função $v \in L^q(a,b;X')$ dada por (1.1). Além disso

$$\|\overline{v}\|_{Y'} = \|v\|_{L^q(a,b;X')}$$

(b) O espaço de Banach $L^p(a,b;X)$ é reflexivo e separável.

Demonstração: Ver [45].

Assim podemos identificar Y' com $L^q(a,b;X')$, pois pelo Teorema acima existe um isomorfismo isométrico. Donde

$$\langle v, u \rangle = \int_a^b \langle v(t), u(t) \rangle_X dt; \quad \|v\| = \left(\int_a^b \|v(t)\|_{X'}^q dt \right)^{\frac{1}{q}} \quad \forall u \in Y \quad \forall v \in Y'$$

Sejamae bdois números reais finitos ou não, $a < b, \, X$ e Yespaços de Banach com Xdenso em Ye $m \geq 1$ inteiro, definamos

$$W(a,b) := \{ u \in L^2(a,b;X); \frac{d^m u}{dt^m} = u^{(m)} \in L^2(a,b;Y) \}$$

onde $u^{(m)}$ é neste sentido uma distribuição em $\mathcal{D}'(a,b;X).$ A norma é dada por

$$||u||_{W(a,b)} = \left[||u||_{L^2(a,b;X)}^2 + ||u^{(m)}||_{L^2(a,b;Y)}^2 \right]^{\frac{1}{2}}.$$

Segue daí que W(a, b) é um espaço de Banach.

Denotaremos por $\mathcal{D}(a,b;X)$ o espaço localmente convexo das funções vetoriais φ : $(a,b)\mapsto X$ infinitamente diferenciáveis com suporte compacto em (a,b). Diremos que $\varphi_{\nu}\to\varphi$ em $\mathcal{D}(a,b;X)$ se:

- i) $\exists K$ compacto de (a,b) tal que $supp(\varphi_{\nu})$ e $supp(\varphi)$ estão contidos em $K, \forall \nu$;
- ii) Para cada $k \in \mathbb{N}$, $\varphi_{\nu}^{(k)}(t) \to \varphi^{(k)}(t)$ em X uniformemente em $t \in (a,b)$.

Prova-se que o conjunto $\{\theta\xi, \ \theta \in \mathcal{D}(\Omega), \xi \in X\}$ é total em $\mathcal{D}(a, b; X)$.

Denotaremos por $H_0^1(a,b;X)$ o espaço de Hilbert

$$H_0^1(a,b;X) := \{ v \in L^2(a,b:X), v' \in L^2(a,b:X), v(a) = v(b) = 0 \}$$

munido com o produto interno

$$((w,v)) = \int_{a}^{b} (w(t), v(t))_{X} dt + \int_{a}^{b} (w'(t), v'(t))_{X} dt.$$

identificando $L^2(a,b:X)$ com o seu dual $[L^2(a,b:X)]'$, via Teorema de Riesz, obtemos

$$\mathcal{D}(a,b;X) \hookrightarrow H_0^1(a,b;X) \hookrightarrow L^2(a,b:X) \hookrightarrow H^{-1}(a,b;X) \hookrightarrow \mathcal{D}'(a,b;X)$$
 onde $H^{-1}(a,b;X) = [H_0^1(a,b;X)]'$

Proposição 1.21. Seja $u \in L^2(a, b : X)$. Então existe um único $f \in H^{-1}(a, b; X)$ que verifica

$$\langle f, \theta \xi \rangle = (\langle u', \theta \rangle, \xi)_X \quad \forall \theta \in \mathcal{D}(a, b), \quad \forall \xi \in X$$

Demonstração: Ver [26].

Da proposição anterior podemos identificar f com u', de posse disso, diremos que se $u \in L^2(a, b : X)$ então $u' \in H^{-1}(a, b; X)$

Proposição 1.22. A aplicação

$$u \in L^2(a, b : X) \mapsto u' \in H^{-1}(a, b; X)$$

onde X é um espaço de Hilbert, é linear e contínua.

Demonstração: Ver [26].

Proposição 1.23. O espaço $\mathcal{D}(a,b;X)$ e denso em W(a,b)

Demonstração: Ver [20].

Da proposição acima, tomando $X=L^2(\omega)=Y$ que $\mathcal{D}(a,b;X)$ é denso em $H^m(a,b;L^2(\omega))$

1.2.1 O Espaço W(a, b; V, V')

Consideremos dois espaços de Hilbert reais separáveis V e H, com $V \subset H$ e V denso em H. Sejam $(.,.)_H, (.,.)_V$ e $\|.\|_H, \|.\|_V$ denotando o produto interno e a norma de H e V respectivamente. Também, H' e V' denotam os duais desses espaços. J a aplicação inclusão de V em H. Logo o operador J^* é linear e contínuo de H' em V'. Além disso, J^* é injetor, visto que J(V) = V é denso em H e $J^*(H')$ é denso em V', pois J é injetor. Portanto, H' pode ser identificado como um subespaço denso em V'. Por outro lado, pelo Teorema da Representação de Riesz, podemos identificar H com o seu dual H', obtendo as seguintes imersões densas e contínuas

$$V \subset H \equiv H' \subset V'$$
.

Como consequência desta identificação, o produto escalar em H de $f \in H$, $u \in V$ é o mesmo que o produto interno de f e u na dualidade entre V e V', ou seja

$$f(u) = \langle f, u \rangle = (f, u)_H, \quad \forall f \in H \quad \forall u \in V$$

Introduzimos o espaço W(a, b; V, V') para dar sentido a equação

$$u' + Au = 0 \text{ em } (0, T)$$

onde $A \in L(V, V')$, sendo válidas as imersões anteriores. Para Au ter significado, é razoável que u assuma valores em V, isto é, $u \in L^p(a, b; V)$, $1 \le p \le +\infty$. Então $u' = -Au \in L^p(a, b; V')$

Sejam $a, b \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ definamos

$$W(a, b; V, V') := \{ u \in L^2(a, b; V); u' \in L^2(a, b; V') \}$$

onde a derivada em relação à t é no sentido das distribuições. Equipamos o espaço W(a,b;V,V') com a norma

$$||u||_{W} = \left(||u||_{L^{2}(a,b;V)}^{2} + ||u'||_{L^{2}(a,b;V')}^{2}\right)^{\frac{1}{2}} = \left(\int_{a}^{b} \left[||u(t)||_{V}^{2} + ||u'||_{V'}^{2}\right] dt\right)^{\frac{1}{2}}$$

é um espaço de Hilbert.

Lema 1.24. Para $a, b \in \mathbb{R}$ finitos ou não, o espaço $\mathcal{D}((a,b); V)$ das restrições em [a,b] de funções de $\mathcal{D}(\mathbb{R}, V)$. Então $\mathcal{D}((a,b); V)$ é denso em W(a,b; V, V')

Demonstração: Faremos a prova em três etapas.

 (1^{a}) - Restringiremos ao caso em que a ou b é infinito.

Primeiro, se $[a, b] \subset \mathbb{R}$, introduziremos $\theta_i \in \mathcal{D}(a, b)$, i = 1, 2, com $\theta_1(t) + \theta_2(t) = 1$, $\forall t \in [a, b]$, e θ_1 nula em uma vizinhança de b e θ_2 nula em uma vizinhança de a. Então, $\forall u \in W(a, b; V, V')$, temos $u = \theta_1 u + \theta_2 u$. Introduzimos

$$u_1 = \begin{cases} \theta_1 u & \text{para } t \in [a, b] \\ 0 & \text{para } t > b \end{cases} \qquad u_2 = \begin{cases} \theta_2 u & \text{para } t \in [a, b] \\ 0 & \text{para } t < a \end{cases}$$

e obtemos que $u_1 \in W(a, +\infty; V, V')$ e $u_2 \in W(-\infty, b; V, V')$.

(2^a)- Restringiremos ao caso em que $a = -\infty$ e $b = +\infty$.

Seja $u \in W(a, +\infty; V, V')$ e h > 0, definamos $u_h(t) = u(t+h)$ quase sempre para $t \ge a$. Então, segue que $u'_h(t) = u'(t+h)$ quase sempre para $t \ge a$ e $u_h \in W(a, +\infty; V, V')$. Além disso, pela continuidade das translações em L^2

$$u_h \longrightarrow u \text{ em } L^2(a, +\infty; V) \text{ quando } h \longrightarrow 0$$

$$u_h' \longrightarrow u'$$
 em $L^2(a, +\infty; V')$ quando $h \longrightarrow 0$.

Portanto,

$$u_h \longrightarrow u \text{ em } W(a, +\infty; V, V') \text{ quando } h \longrightarrow 0.$$

Seja $\psi \in C^{\infty}(\mathbb{R})$ tal que $0 \le \psi(t) \le 1$, $\psi(t) = 1$ se $t \ge a - \frac{h}{2}$ e $\psi(t) = 0$ se $t \le a - h$. Fazendo

$$v_h(t) = \begin{cases} \psi(t)u_h(t) & \text{se } t \ge a - h \\ 0 & \text{se } t \le a - h \end{cases}$$

temos que $v_h = u_h$ quase sempre $t \ge a$ e $v_h \in W(-\infty, +\infty; V, V')$.

(3^a)- Mostraremos que $\mathcal{D}(\mathbb{R}; V)$ é denso em $W(-\infty, +\infty; V, V')$.

Seja $u \in W(-\infty, +\infty; V, V')$. Inicialmente regularizando u, isto é, aproximaremos u por $u_{\epsilon} \in C^{\infty}(\mathbb{R}; V)$. Para isso, seja $J \in \mathcal{D}(\mathbb{R})$ tal que $J \geq 0$, $\int_{\mathbb{R}} J(t) dt = 1$. Definamos, para cada $\epsilon > 0$.

$$J_{\epsilon} = \frac{1}{\epsilon} J\left(\frac{t}{\epsilon}\right) \quad \text{e} \quad u_{\epsilon}(t) = (J_{\epsilon} * u)(t) = \int_{\mathbb{R}} J_{\epsilon}(t - s)u(s)ds$$

segue que $u_{\epsilon} \in C^{\infty}(\mathbb{R}; V)$ e quando $\epsilon \longrightarrow 0$,

$$u_{\epsilon} \longrightarrow u \text{ em } L^{2}(\mathbb{R}; V)$$

$$u'_{\epsilon} = u' * J_{\epsilon} \longrightarrow u' \text{ em } L^{2}(\mathbb{R}; V').$$

Agora, é suficiente aproximar u_{ϵ} por elementos de $\mathcal{D}(\mathbb{R}; V)$. Para tanto, usaremos um processo de truncamento. Seja $\rho \in \mathcal{D}(\mathbb{R})$ tal que $\rho(t) = 1$ para $|t| \leq 1$ e $\rho(t) = 0$ para $|t| \geq 2$. Definamos $\rho_n(t) = \rho\left(\frac{t}{n}\right)$ e obtemos que

$$\rho_n u_{\epsilon} \longrightarrow u_{\epsilon} \text{ em } W(-\infty, +\infty; V, V')$$

quando
$$n \longrightarrow +\infty$$
.

Lema 1.25. Para $a, b \in \mathbb{R}$, existe um operador de extensão contínuo de W(a, b; V, V') em $W(-\infty, +\infty; V, V')$

Demonstração: Procederemos em duas etapas.

(1^a)- Restringiremos ao caso em que $[a,b] \subset \mathbb{R}$ com a ou b infinito.

Para isto, usamos o mesmo método da primeira etapa do lema anterior. Assim, o operador de extensão é dado por

$$Pu(t) = \begin{cases} u_1 & \text{para } t < a \\ u & \text{para } a \le t \le b \\ u_2 & \text{para } t > b \end{cases}$$

(2^a)- Supomos, por exemplo, que $b = +\infty$.

Pela translação sobre a variável h, podemos reduzir ao espaço $W(0, +\infty; V, V')$. Seja $u \in \mathcal{D}([0, +\infty); V)$. Definimos

$$Pu(t) = \begin{cases} u(t) & \text{para } t \ge 0\\ u(-t) & \text{para } t < 0. \end{cases}$$

Então, $Pu \in L^2(0, +\infty; V)$ e

$$[Pu(t)]' = \begin{cases} u'(t) & \text{para } t > 0\\ -u'(-t) & \text{para } t < 0. \end{cases}$$

Como Pu(t) é continuo (pois $u\in\mathcal{D}([0,+\infty);V)$) em t=0, segue que $Pu\in W(-\infty,+\infty;V,V')$ e

$$||Pu||_{W(-\infty,+\infty;V,V')} \le 2||u||_{W(0,+\infty;V,V')}.$$

Do lema anterior, $\mathcal{D}([0, +\infty); V)$ é denso em $W(0, +\infty; V, V')$. Assim, P pode ser prolongada a uma aplicação linear contínua \tilde{P} de $W(0, +\infty; V, V')$ em $W(-\infty, +\infty; V, V')$. Como $\tilde{P}u = Pu$ quase sempre, (onde Pu é dado pela equação anterior), temos que Pu = u quase sempre para $t \in (0, +\infty)$ e isso completa a prova.

Teorema 1.26. Para $a, b \in \mathbb{R}$, $u \in W(a, b; V, V')$ é quase sempre igual a uma função contínua de [a, b] em V. Além disso, temos W(a, b; V, V') está imerso continuamente em $C^0([a, b]; V)$

Demonstração: Seja $u \in W(a, b; V, V')$ e P o operador de extensão de W(a, b; V, V') em $W(-\infty, +\infty; V, V')$. Do primeiro lema, temos a existência de uma sequência $\{\psi_n\}$ $\psi_n \in \mathcal{D}(\mathbb{R}, V)$ satisfazendo

$$Pu = \lim_{n \to +\infty} \psi_n \text{ em } W(-\infty, +\infty; V, V').$$

Além disso, $\langle .,. \rangle$ denotando a dualidade entre V e V', temos

$$|\psi_{n}(t)|^{2} = \int_{-\infty}^{t} \frac{d}{ds} |\psi_{n}(s)|^{2} ds = \int_{-\infty}^{t} \frac{d}{ds} (\psi_{n}(s), \psi_{n}(s))_{V} ds$$

$$= 2 \int_{-\infty}^{t} (\psi_{n}(s), \psi'_{n}(s))_{V} ds = 2 \int_{-\infty}^{t} \langle \psi_{n}(s), \psi'_{n}(s) \rangle ds$$

$$\leq 2 \int_{-\infty}^{t} ||\psi_{n}(s)||_{V} ||\psi'_{n}(s)||_{V'}.$$

Aplicando a desigualdade $2ab \le a^2 + b^2$, segue

$$|\psi_n(t)|^2 \le \int_{-\infty}^t \|\psi_n(s)\|_V^2 ds + \int_{-\infty}^t \|\psi_n'(s)\|_{V'}^2 ds$$

Logo,

$$\sup_{t} \|\psi_n(t)\| \le \|\psi_n\|_W.$$

Agora, trocando ψ_n por $(\psi_n - \psi_m)$ na desigualdade acima e usando o fato que $\{\psi_n\}$ é uma sequência de Cauchy em $W(-\infty, +\infty; V, V')$, assim, $\{\psi_n\}$ é uma sequência de Cauchy em $C^0(\mathbb{R}; V)$, munido com a topologia da convergência uniforme. Então, existe $v \in C^0(\mathbb{R}; V)$ tal que

$$\psi_n \longrightarrow v \text{ em } C^0(\mathbb{R}; V).$$

Mas, $\psi_n \longrightarrow Pu$ em $W(-\infty, +\infty; V, V')$. Logo Pu = v quase sempre, e u = v quase sempre em [a, b]. Agora passando o limite na desigualdade anterior, vem

$$||u||_{C^0([a,b];V)} \le C||u||_W$$

pois, P é um operador linear limitado, $||Pu||_W \leq C||u||_W$

Como consequência do teorema acima, $u \in W(a,b;V,V')$ com $[a,b] \subset \mathbb{R}$, podemos falar no traço $u(a),\,u(b)\in H$

1.2.2 Funções Escalarmente Contínuas

Seja X um espaço de Banach. Definimos o espaço das funções escalarmente contínuas (ou fracamente contínuas) como o conjunto das funções $f \in L^{\infty}(0,T;X)$ tais que a aplicação $t \to \langle f(t), x \rangle$ é contínua sobre [0,T], $\forall x \in X'$, onde X' é dual de X. Denotaremos tal espaço por $C_s(0,T;X)$.

Disto segue que $C_s^1(0,T;X) = \{u \in C_s(0,T;X); u' \in C_s(0,T;X)\}$, onde u' é a derivada de u no sentido das distribuições. Da mesma forma temos que $C_s^2(0,T;X) = \{u \in C_s(0,T;X); u'' \in C_s(0,T;X)\}$.

Observação: Se $u \in L^{\infty}(0,T;X)$ e $u \in C([0,T];X)$ então $u \in C_s(0,T;X)$.

Lema 1.27. Sejam X e Y dois espaços de Banach, $X \hookrightarrow Y$ e X um espaço reflexivo. Então

$$L^{\infty}(0,T;X) \cap C_s(0,T;Y) = C_s(0,T;X).$$

Demonstração: Ver [20].

1.3 Teoria de Traço

Consideremos $\Omega = \mathbb{R}^n_+$ ou Ω um aberto limitado bem regular do \mathbb{R}^n com fronteira Γ . Por $\mathcal{D}(\Gamma)$ representa-se o espaço vetorial das funções reais w definidas em Γ , possuindo derivadas parciais contínuas de todas as ordens. Dada uma função w definida em $\overline{\Omega}$, representa-se $\gamma_0 w$ a restrição de w a Γ .

Proposição 1.28. Existe uma constante positiva C tal que

$$\|\gamma_0 u\|_{H^{\frac{1}{2}\Gamma}} \le C \|u\|_{H^1(\Omega)}$$

25

para toda $u \in \mathcal{D}(\overline{\Omega})$.

Demonstração: Ver [24].

Considerando $\mathcal{D}(\overline{\Omega})$ com a topologia induzida por $H^1(\Omega)$, segue pela proposição 1.28 que a aplicação

$$\gamma_0: \mathcal{D}(\overline{\Omega}) \to H^{\frac{1}{2}}(\Gamma)$$

é contínua. Sendo $\mathcal{D}(\overline{\Omega})$ denso em $H^1(\Omega)$, esta aplicação se prolonga por continuidade a uma aplicação linear e contínua, ainda representada por γ_0 , tal que

$$\gamma_0: H^1(\Omega) \to H^{\frac{1}{2}}(\Gamma),$$

a qual denomina-se função traço.

Teorema 1.29. A função traço aplica $H^1(\Omega)$ sobre $H^{\frac{1}{2}}(\Gamma)e$ o núcleo de γ_0 é o espaço $H^1_0(\Omega)$.

Demonstração: Ver [24].

Consideremos, agora, Ω uma aberto limitado do \mathbb{R}^n com fronteira Γ bem regular, e seja ν a normal unitária exterior em Γ . Para todo $j=1,\ldots,m-1$ e $u\in\mathcal{D}(\overline{\Omega})$, seja $\gamma_j u = \frac{\partial^j u}{\partial \nu^j}\Big|_{\Gamma}$ a derivada normal de ordem j de u e $\gamma_0 u$ $u|_{\Gamma}$. Da densidade do espaço $(\mathcal{D}(\Gamma))^m$ no espaço de Hilbert $H^{m-\frac{1}{2}}(\Gamma)\times H^{m-\frac{3}{2}}(\Gamma)\times\ldots\times H^{\frac{1}{2}}(\Gamma)$ temos o seguinte resultado:

Teorema 1.30. Existe uma única aplicação linear e contínua γ do espaço $H^m(\Omega)$ sobre o espaço $\Pi_{j=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma)$ com núcleo $\gamma^{-1}(0)=H_0^m(\Omega)$, verificando a seguinte condição

$$\gamma u = (\gamma_0 u, \gamma_1 u, \dots, \gamma_{m-1} u), \ \forall u \in \mathcal{D}(\overline{\Omega}).$$

Tal aplicação admite uma inversa à direita linear e contínua.

Demonstração: Ver [24].

Além desses resultados, considerando os espaços de Hilbert $\mathcal{H}^0(\Omega) = \{u \in L^2(\Omega); \Delta u \in L^2(\Omega)\}\$ e $\mathcal{H}^1(\Omega) = \{u \in H^1(\Omega); \Delta u \in L^2(\Omega)\}\$ munidos dos seguintes produtos internos

$$(u,v)_{\mathcal{H}^0} = (u,v)_{L^2(\Omega)} + (\Delta u, \Delta v)_{L^2(\Omega)}; \forall u,v \in \mathcal{H}^0(\Omega) \text{ e}$$

$$(u,v)_{\mathcal{H}^1} = (u,v)_{H^1(\Omega)} + (\Delta u, \Delta v)_{L^2(\Omega)}; \forall u,v \in \mathcal{H}^1(\Omega),$$

respectivamente, temos os seguintes resultados:

Proposição 1.31. A aplicação linear $\gamma: \mathcal{D}(\overline{\Omega}) \to H^{-\frac{1}{2}}(\Gamma) \times H^{-\frac{3}{2}}(\Gamma)$ definida por $u \mapsto \gamma u = (\gamma_0 u, \gamma_1 u)$ se estende por continuidade a uma única aplicação linear e contínua

$$\gamma: \mathcal{H}^0(\Omega) \to H^{-\frac{1}{2}}(\Gamma) \times H^{-\frac{3}{2}}(\Gamma)$$

 $u \mapsto \gamma u = (\gamma_0 u, \gamma_1 u).$

Além disso, a aplicação γ acima coincide com a aplicação traço de ordem dois.

Demonstração: Ver [12].

Proposição 1.32. A aplicação linear $\gamma_1: \mathcal{D}(\overline{\Omega}) \to H^{-\frac{1}{2}}(\Gamma)$ definida por $u \mapsto \gamma_1 u = \frac{\partial u}{\partial \nu}\big|_{\Gamma}$ se estende por continuidade a uma única aplicação linear e contínua

$$\gamma_1: \mathcal{H}^1(\Omega) \to H^{-\frac{1}{2}}(\Gamma).$$

Demonstração: Ver [12].

1.3.1 Traço em $L^2(0,T;H^m(\Omega))$.

Pelo visto anteriormente temos que existe uma aplicação traço

$$\gamma: H^m(\Omega) \to \prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma)$$
 (1.2)

que é linear, contínua, sobrejetora, com núcleo $H_0^m(\Omega)$, e admite uma inversa à direita linear e contínua.

Definamos a aplicação

$$\gamma: L^{2}(0,T;H^{m}(\Omega)) \to L^{2}\left(0,T;\prod_{j=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma)\right)$$

$$u \mapsto \gamma u, (\gamma u)(t) = \gamma u(t)$$

$$(1.3)$$

onde $\gamma u(t)$ é a aplicação (1.2) aplicado em $u(t) \in H^m(\Omega)$. Denotamos as aplicações (1.2) e (1.3) com o mesmo símbolo para não sobrecarregar a notação. A aplicação definida em (1.3) é uma aplicação linear, contínua, sobrejetora, com núcleo

 $L^2(0,T;H_0^m(\Omega))$, que admite uma inversa à direita τ linear e contínua, isto é,

$$\tau: L^{2}\left(0, T; \prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma)\right) \mapsto L^{2}(0, T; H^{m}(\Omega)), ; \gamma(\tau(\eta)) = \eta.$$
 (1.4)

De forma análoga podemos definir

$$\gamma: H_0^1(0,T;H^m(\Omega)) \rightarrow H_0^1\left(0,T;\prod_{j=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma)\right)$$

$$u \mapsto \gamma u, (\gamma u)(t) = \gamma u(t)$$

$$(1.5)$$

que tem as mesmas propriedades da aplicação (1.3).

Proposição 1.33. Seja $u \in L^2(0,T;H^m(\Omega))$ com $u' \in L^2(0,T;H^m(\Omega))$ então $\gamma u' = (\gamma u)'$.

Demonstração: Ver [12].

1.3.2 Traço em $H^{-1}(0, T; H^m(\Omega))$

Seja $\mathcal{K} = L^2(0,T;H^m(\Omega)) \times L^2(0,T;H^m(\Omega))$ e M o subespaço fechado de \mathcal{K} dos vetores $\{\alpha,\beta\}$ tais que

$$(\alpha, v)_{L^2(0,T;H^m(\Omega))} + (\beta, v')_{L^2(0,T;H^m(\Omega))},$$

para todo $v \in H_0^1(0,T;H^m(\Omega))$. Então a aplicação

$$H^{-1}(0,T;H^{m}(\Omega)) \rightarrow M^{\perp}$$

$$f \mapsto \{\phi_{f}^{0},\psi_{f}^{0}\}$$

$$(1.6)$$

onde $\{\phi_f^0, \psi_f^0\} \in \mathcal{E}_f$ é tal que $||f|| + ||\{\phi_f^0, \psi_f^0\}||$ e $\mathcal{E}_f = \{\{\phi_f, \psi_f\} \in \mathcal{K}; (\phi_f, v) + (\psi_f, v')\}$ = $\langle f, v \rangle \forall v \in H_0^1(\Omega) \}$, isto é, o conjunto dos $\{\phi_f, \psi_f\} \in \mathcal{K}$ tais que $f = \phi_f - \psi_f$. A aplicação definida em (1.6) é uma isometria linear sobrejetora. Para $f \in H^{-1}(0,T;H^m(\Omega))$ defini-se $\widetilde{\gamma}f$ na forma:

$$\langle \widetilde{\gamma}f, w \rangle = \int_0^T (\gamma \phi_f^0, w)_{\prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma)} dt + \int_0^T (\gamma \psi_f^0, w')_{\prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma)} dt$$
 (1.7)

 $w \in H_0^1\left(0,T;\prod_{j=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma)\right)$, que é linear e contínua.

Assim temos estabelecido uma aplicação

$$\widetilde{\gamma}: H^{-1}(0,T;H^m(\Omega)) \rightarrow H^{-1}\left(0,T;\prod_{j=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma)\right)$$

$$f \mapsto \widetilde{\gamma}f$$
(1.8)

 $\tilde{\gamma}f$ definido por (1.7), que é linear e contínua. Esta aplicação é denominada aplicação traço para as funções de $H^{-1}(0,T;H^m(\Omega))$. Assim são válidos os seguintes resultados:

Proposição 1.34. Se $u \in L^2(0,T;H^m(\Omega))$ então

$$\gamma u|_{H_0^1(0,T;\prod_{i=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma))} = \widetilde{\gamma} u.$$

Proposição 1.35. Se $u \in L^2(0,T;H^m(\Omega))$ então

$$\widetilde{\gamma}u' = (\gamma u)'.$$

Teorema 1.36. A aplicação traço (1.8) é sobrejetora, seu núcleo é $H^{-1}(0,T;H_0^m(\Omega))$, e admite uma inversa à direita $\tilde{\tau}:H^{-1}(0,T;\prod_{j=0}^{m-1}H^{m-j-\frac{1}{2}}(\Gamma))\to H^{-1}(0,T;H^m(\Omega))$ linear e contínua.

Observação 1.37. Além desses resultados se considerarmos os espaços de Hilbert $\mathcal{H}^0(\Omega) = \{u \in L^2(\Omega); \ \Delta u \in L^2(\Omega)\}\ ou\ \mathcal{H}^1(\Omega) = \{u \in H^1(\Omega); \Delta u \in L^2(\Omega)\}\ em\ vez\ de\ H^m(\Omega)\ em\ conjunto\ com\ as\ proposições\ 1.31\ e\ 1.32\ obteremos\ a\ existência\ das\ aplicações$

$$\gamma: H^{-1}(0,T;\mathcal{H}^0(\Omega)) \to H^{-1}(0,T;H^{-\frac{1}{2}}(\Gamma) \times H^{-\frac{3}{2}}(\Gamma))$$

e

$$\gamma_1: H^{-1}(0,T;\mathcal{H}^1(\Omega)) \to H^{-1}(0,T;H^{-\frac{1}{2}}(\Gamma)).$$

1.4 Teorema de Carathéodory

Nesta seção enunciaremos o teorema de Carathéodory que será utilizado no capítulo 2. O teorema nos fornece a existência de solução para um problema de Cauchy em um intervalo $[0, t_m]$, para cada $m \in \mathbb{N}$. A demonstração deste resultado pode ser encontrada em [13].

Seja $\Omega \subset \mathbb{R}^{n+1}$ um conjunto aberto cujos elementos são denotados por (t,x), $t \in \mathbb{R}$, $x \in \mathbb{R}^n$ e seja $f: \Omega \to \mathbb{R}^n$ uma função.

Consideremos o problema de valor inicial

$$\begin{cases} x'(t) = f(t, x(t)), \\ x(t_0) = x_0, \end{cases}$$
 (1.9)

Dizemos que $f:\Omega\to\mathbb{R}^n$ satisfaz as condições de Carathéodory sobre Ω se:

- (i) f(t, x) é mensurável em t para cada x fixado;
- (ii) f(t,x) é contínua em x para quase todo t fixado;
- (iii) para cada compacto $K \subset \Omega$, existe uma função real $m_K(t)$, integrável, tal que

$$||f(t,x)||_{\mathbb{R}^n} < m_K(t), \ \forall (t,x) \in K.$$

Teorema 1.38. (Teorema de Carathéodory) - Seja $f: \Omega \to \mathbb{R}^n$ satisfazendo as condições de Carathéodory sobre Ω . Então existe uma solução x(t) de (1.9) sobre algum intervalo $|t-t_0| \leq \beta$, $\beta > 0$.

Corolário 1.39. Sejam $\Omega = [0, T[\times B \ com \ T > 0, \ B = \{x \in \mathbb{R}^n; |x| \le b\} \ onde \ b > 0$ $e \ f : \Omega \to \mathbb{R}^n$ nas condições de Carathéodory sobre Ω . Suponhamos que x(t) é uma solução de (1.9) tal que $|x_0| \le b$ e que em qualquer intervalo I, onde x(t) está definida, se tenha $|x(t)| \le M$, $\forall t \in I$, M independente de I e M < b. Então x(t) possui um prolongamento à todo [0,T].

1.5 Resultados Auxiliares

Nesta seção enunciaremos resultados importantes que serão utilizados ao longo de todo o trabalho.

Proposição 1.40. (Desigualdade de Cauchy-Schwarz) - Sejam $x, y \in \mathbb{R}^n$, então

$$|x.y| \le |x||y|.$$

Definição 1.41. Seja E um espaço de Banach. A topologia fraca $\sigma(E, E')$ sobre E é a topologia menos fina sobre E que torna contínuas todas as aplicações $f \in E'$.

Seja $(x_n)_{n\in\mathbb{N}}$ uma seqüência de E a qual converge para x em E na topologia fraca $\sigma(E, E')$. Utilizamos, neste caso, a seguinte notação:

$$x_n \rightharpoonup x \text{ em } E$$
.

Proposição 1.42. Seja $(x_n)_{n\in\mathbb{N}}$ uma seqüência em E, então:

- (i) $x_n \rightharpoonup x$ em E se, e somente se, $\langle f, x_n \rangle \rightarrow \langle f, x \rangle$, $\forall f \in E'$.
- (ii) Se $x_n \to x$ em E, então $x_n \rightharpoonup x$ em E.
- (iii) Se $x_n \rightharpoonup xem E$, então $||x_n||_E$ é limitada e $||x||_E \le \liminf |x_n||_E$.
- (iv) Se $x_n \rightharpoonup xem \ E \ e \ f_n \rightarrow f \ em \ E', \ ent \~ao \ \langle f_n, x_n \rangle \rightarrow \langle f, x \rangle.$

Demonstração: Ver [5].

Seja E um espaço de Banach e seja $x \in E$ fixo. Definamos $J_x : E' \to \mathbb{R}$ por

$$\langle J_x, f \rangle = \langle f, x \rangle.$$

As aplicações J_x são lineares e contínuas, portanto $J_x \in E''$, $\forall x \in E$.

Definamos, agora, $J: E \to E''$ tal que $J(x) = J_x$.

Definição 1.43. A topologia fraca *, também designada por $\sigma(E', E)$, é a topologia menos fina sobre E' que torna contínuas todas as aplicações J_x .

Proposição 1.44. Seja $(f_n)_{n\in\mathbb{N}}$ uma seqüência em E', então:

- (i) $f_n \stackrel{*}{\rightharpoonup} f$ em E' se, e somente se, $\langle f_n, x \rangle \rightarrow \langle f, x \rangle$, $\forall x \in E$.
- (ii) Se $f_n \to f$ em E', então $f_n \rightharpoonup f$ em E'.
- (iii) Se $f_n \rightharpoonup f$ em E', então $f_n \stackrel{*}{\rightharpoonup} f$ em E'.

Demonstração: Ver [5].

Lema 1.45. Sejam E um espaço de Banach reflexivo e $(x_n)_{n\in\mathbb{N}}$ uma seqüência limitada em E, então existe uma subseqüência $(x_{n_k})_{k\in\mathbb{N}}$ de $(x_n)_{n\in\mathbb{N}}$ e $x\in E$, tal que

$$x_{n_k} \rightharpoonup x \text{ fracamente em } E.$$

Demonstração: Ver [5].

Lema 1.46. Sejam E um espaço de Banach separável e $(f_n)_{n\in\mathbb{N}}$ uma seqüência limitada em E', então existe uma subseqüência $(f_{n_k})_{k\in\mathbb{N}}$ e f \in E', tal que

$$f_{n_k} \stackrel{*}{\rightharpoonup} f \ em \ E'$$
.

Demonstração: Ver [5].

Lema 1.47. (Lema de Gronwall) - Sejam $z \in L^{\infty}(0,T)$ e $f \in L^{1}(0,T)$ tais que $z(t) \geq 0$, $f(t) \geq 0$ e seja c uma constante não negativa. Se

$$f(t) \le c + \int_0^t z(s)f(s)ds, \ \forall t \in [0, T],$$

 $ent ilde{a}o$

$$f(t) \le ce^{\int_0^t z(s)ds}, \ \forall t \in [0, T].$$

Demonstração: Ver [21].

Lema 1.48. Seja Ω um aberto do \mathbb{R}^n de classe C^{∞} . Sejam s_1, s_2 e s_3 números reais tais que

$$s_1 > s_2 > s_3$$
.

Então, para todo $\eta > 0$ existe uma constante $C(\eta)$ tal que

$$||u||_{H^{s_2}(\Omega)} \le \eta ||u||_{H^{s_1}(\Omega)} + C(\eta) ||u||_{H^{s_3}(\Omega)}, \quad \forall u \in H^{s_1}(\Omega).$$

Demonstração: Ver [19].

Proposição 1.49. (Teorema de Aubin-Lions) - Sejam B_0, B, B_1 três espaços de Banach tais que $B_0 \stackrel{c}{\hookrightarrow} B \hookrightarrow B_1$, onde B_0 e B_1 são reflexivos. Definamos

$$W = \left\{ v; v \in L^{p_0}(0, T; B_0), \ v' = \frac{dv}{dt} \in L^{p_1}(0, T; B_1) \right\},\,$$

onde $1 < p_0, p_1 < \infty$, e consideremos W munido da norma

$$||v||_{L^{p_0}(0,T;B_0)} + ||v'||_{L^{p_1}(0,T;B_1)},$$

o que o torna um espaço de Banach. Então, a imersão de W em $L^{p_0}(0,T;B)$ é compacta.

Proposição 1.50. (Lema de Lions) - Seja (u_{ν}) uma sucessão de funções pertencentes à $L^{q}(Q)$ com $1 < q < \infty$. Se

- (i) $u_{\nu} \rightarrow u$ quase sempre em Q
- (ii) $||u_{\nu}||_{L^{q}(Q)} \leq C, \ \forall \nu \in \mathbb{N};$

então $u_{\nu} \rightharpoonup u$ fraco em $L^{q}(Q)$.

Proposição 1.51. (Fórmula de Gauss e a Fórmula de Green) - Seja Ω um aberto limitado bem regular do \mathbb{R}^n . Se $u, v \in H^1(\Omega)$, então para $1 \leq i \leq n$ temos que

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} dx = -\int_{\Omega} \frac{\partial u}{\partial x_i} v dx + \int_{\Gamma} (\gamma_0 u)(\gamma_0 v) \nu_i d\Gamma,$$

onde $\nu = (\nu_1, \nu_2, \dots, \nu_n)$ e ν denota o vetor normal unitário exterior à Γ .

Se $u \in H^2(\Omega)$ e $v \in H^1(\Omega)$, temos a fórmula de Green:

$$\int_{\Omega} \nabla u \nabla v dx = -\int_{\Omega} \Delta u v dx + \int_{\Gamma} v \frac{\partial u}{\partial \nu} d\Gamma.$$

Demonstração: Ver [12].

Proposição 1.52. (Fórmula de Green generalizada) - Para todo $u \in \mathcal{H}^1(\Omega)e\ v \in H^1(\Omega)$, tem-se

$$(\Delta u, v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)} = \langle \gamma_1 u, \gamma_0 v \rangle_{H^{-\frac{1}{2}}(\Gamma) \times H^{\frac{1}{2}}(\Gamma)},$$

onde $\Gamma = \partial \Omega$.

Demonstração: Ver [12].

Proposição 1.53. (Regularidade dos problemas elípticos) - Seja Ω um aberto de classe C^2 com fronteira Γ limitada. Sejam $f \in L^2(\Omega)$ e $u \in H^1_0(\Omega)$, verificando

$$\int_{\Omega} \nabla u \nabla \varphi + \int_{\Omega} u \varphi = \int_{\Omega} f \varphi, \ \forall \varphi \in H_0^1(\Omega).$$

Então, $u \in H^2(\Omega)$ e $||u||_{H^2(\Omega)} \leq c||f||_{L^2(\Omega)}$, onde c é uma constante que só depende de Ω . Além disso, se Ω é de classe C^{m+2} e $f \in H^m(\Omega)$, então $u \in H^{m+2}(\Omega)$ com $||u||_{H^{m+2}(\Omega)} \leq c||f||_{H^m(\Omega)}$; em particular, se $m > \frac{n}{2}$ então $u \in C^2(\overline{\Omega})$. Ainda, se Ω é de classe C^{∞} e $f \in C^{\infty}(\overline{\Omega})$, então $u \in C^{\infty}(\overline{\Omega})$.

Demonstração: Ver [5].

Lema 1.54. Sejam H e V espaços de Banach, tais que $H \hookrightarrow V$. Se $u \in L^1(0,T;H)$ e $u' \in L^1(0,T;V)$ então $u \in C^0([0,T];V)$.

Demonstração: Ver [31].

Teorema 1.55. (Regra da Cadeia) Seja $G \in \mathcal{C}^1(\mathbb{R})$ tal que G(0) = 0 e $|G'(s)| \leq M$ para todo $s \in \mathbb{R}$. Seja $u \in W^{1,p}(\Omega)$. Então a função $G \circ u \in W^{1,p}(\Omega)$ e

$$\frac{\partial}{\partial x_i}(G \circ u) = (G' \circ u)\frac{\partial u}{\partial x_i}, \ 1 \le i \le n.$$

Demonstração: Ver [17].

Proposição 1.56. Seja $u \in L^p$ com 1 . As seguintes propriedades são equivalentes.

- (i) $u \in W^{1,p}$
- (ii) Existe um constante c > 0 tal que

$$\left| \int_{I} u\varphi \right| \le c||\varphi||_{L^{p}(I)} \forall \varphi \in C_{0}^{\infty}(I)$$

(iii) Existe uma constante c>0 tal que para todo aberto $\omega\subset\subset I$ e todo $h\in\mathbb{R}$ com $|h|< dist(\omega,\mathbb{C}I)$ se verifica

$$||\mathbf{T}_h u - u||_{L^p(\omega)} \le c|h|.$$

Ainda mais, pode-se tomar $c = ||w||_{L^p}$ em (ii) e (iii).

Demonstração: Ver [5].

Nota. Quando p=1, permanecem validas as seguintes implicações $(i) \Rightarrow (ii) \Leftrightarrow (iii)$

Supondo I limitado. As funções que verificam (i), digamos as funções de $W^{1,1}$ são as funções absolutamente contínuas. Que são caracterizadas pela seguinte propriedade. Para todo $\epsilon>0$ existe $\delta>0$ tal que para toda sucessão finita de intervalos disjuntos $]a_k,b_k[$ de I com

$$\sum_{k=1}^{n} |b_k - a_k| < \delta, \quad implica \quad \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \epsilon$$

1.6 Teoria Espectral

Consideremos W e H dois espaços de Hilbert tais que $W \stackrel{c}{\hookrightarrow} H$ e W é denso em H. Seja a(u,v) uma forma bilinear, contínua e coerciva em $W\times W$, isto é,

$$\exists \alpha>0 \ ; \ |a(v,v)|\geq \alpha \|v\|_W^2 \ ; \ \forall v\in W.$$
 Considere

$$D(A) = \{u \in W \ ; \ \text{ a forma linear } v \mapsto a(u,v) \not \in \text{contínua } \}$$

onde W está munido com a topologia induzida de H.

Pelo Teorema de Riesz, para cada $u \in D(A)$ existe um único $Au \in H$ tal que $a(u,v)=(Au,v)_H, \forall v \in W$. Notemos que desta forma definimos um operador A com

domínio:

$$D(A) = \{u \in W ; \exists f \in H \text{ tal que } a(u, v) = (f, v)_H, \forall v \in W \text{ e } Au = f\}$$

Temos que D(A) é um subespaço linear de H e $A:D(A)\subset W\to H$ é um operador de H. O operador A acima é denominado o operador determinado pela terna $\{V,H,a(u,v)\}$ e denotamos por $A\leftrightarrow \{V,H,a(u,v)\}$.

Proposição 1.57. (Teorema Espectral)-Nas condições acima, obtemos

- (i) A é auto-adjunto e existe um sistema ortonormal completo $(\omega_{\nu})_{\nu \in \mathbb{N}}$ de H constituído de vetores próprios de A.
- (ii) Se $(\lambda_{\nu})_{\nu\in\mathbb{N}}$ são os valores próprios de A correspondentes aos $(\omega_{\nu})_{\nu\in\mathbb{N}}$, então

$$0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_{\nu} \le \cdots, \quad e \ \lambda_{\nu} \longrightarrow \infty$$

(iii) O domínio de A é dado por

$$D(A) = \left\{ u \in H \; ; \; \sum_{\nu=1}^{\infty} \lambda_{\nu}^{2} | (u, \omega_{\nu})_{H} |^{2} < \infty \right\}$$

(iv)
$$Au = \sum_{\nu=1}^{\infty} \lambda_{\nu}(u, \omega_{\nu})_{H} \omega_{\nu} , \quad \forall u \in D(A).$$

Demonstração: Ver [27].

1.7 Operadores Maximais Monótonos - O Teorema de Hille Yosida

Seja H um espaço de Hilbert sobre o corpo dos reais. Detotemos por (\cdot, \cdot) e $|\cdot|$, respectivamente, o produto interno e a norma em H e consideremos $A:D(A)\subset H\to H$ um operador não limitado de H.

Definição 1.58. Dizemos que A é um operador <u>monótono</u> se para todo $v \in D(A)$ tivermos $(Av, v) \ge 0$.

A é dito <u>maximal monótono</u> se, for monótono e, além disso, $Im(I+A)=H,\ ou$ seja,

$$\forall f \in H, \exists u \in D(A) \ tal \ que \ u + Au = f.$$

Proposição 1.59. Seja A um operador maximal monótono sobre H, então temos:

- i) $\overline{D}(A) = H$
- ii) A é fechado.
- iii) $\forall \lambda > 0, (I + \lambda A)$ é bijetor de D(A) sobre H e $(I + \lambda A)^{-1}$ é limitado com $|(I + \lambda A)^{-1}||_{\mathcal{L}(H)} \leq 1$.

Demonstração: Ver [6].

Teorema 1.60. (Hille-Yosida)Seja A um operador maximal monótono em um espaço de Hilbert. Então para todo $u_0 \in D(A)$ existe uma única função

$$u \in C^1([0, +\infty); H) \cap C([0, +\infty), D(A))$$

tal que

$$\begin{cases} \frac{d u(t)}{dt} + Au = 0; \quad \forall t > 0 \\ u(0) = u_0 \end{cases}$$
 (1.10)

Ademais, se verifica:

$$|u(t)| \le |u_0| \ e \ \left| \frac{d u(t)}{dt} \right| = |Au(t)| \le |Au_0|, \forall t \ge 0,$$
 (1.11)

onde D(A) é um espaço de Banach para a norma do gráfico:

$$||u||_{D(A)} = |u| + |Au|.$$

Demonstração: Ver [6].

1.8 Semigrupos

Sejam H um espaço de Hilbert e $A:H\to H$ um operador linear e contínuo. Vamos considerar o problema de Cauchy abstrato

(*)
$$\begin{cases} \frac{du}{dt} + A u = 0 & \text{em } H, \forall t \ge 0 \\ u(0) = u_0 & \text{em } H. \end{cases}$$

O problema de dado inicial descrito em (\star) possui uma única solução para $t\geq 0$ dada por $u(t)=e^{t\,(-A)}\,u_0,$ onde

$$e^{-A} = \sum_{k=0}^{+\infty} \frac{(-A)^k}{k!}.$$

Todavia, há diversas equações diferenciais parciais de evolução que possuem a natureza de (\star) , onde A é um operador linear de H não necessariamente contínuo. No âmbito de elucidar tais problemas, surge uma questão natural: "Existem operadores de H, com propriedades análogas às da aplicação exponencial e^A , que resolvem (\star) com A não necessariamente contínuo?"

Para responder tal pergunta, foi desenvolvida a Teoria de Semigrupos, que será o nosso próximo objeto de estudo. No entanto, não estudaremos Semigrupos no ponto de vista de [16], dentre outros, onde A é definido como um gerador infinitesimal do semigrupo S, mas S é gerado por operador maximal monótono A, em que muitas vezes, é mais atrativo que o citado anteriormente. Assim, com tal enfoque unindo os resultados da seção anterior, juntamente com os resultados a seguir, estudamos a existência, unicidade de soluções de equações de evolução não lineares.

Usando o Teorema de Hille-Yosida, podemos definir para $t \geq 0$, o seguinte operador

linear:

$$S(t): D(A) \rightarrow D(A)$$

$$u_0 \mapsto S(t)u_0 = u(t)$$

Por Hille-Yosida, temos

$$|S(t)u_0| = |u(t)| \le |u_0|; \quad \forall u \in D(A).$$
 (1.12)

Definamos

$$\widetilde{S}(t): H \rightarrow H$$

$$u_0 \mapsto \widetilde{S}(t)u_0$$

Como $\overline{D}(A) = H$, existem u_n e v_n em D(A) tal que $u_n \to u_0$ em H e $v_n \to v_0$ em H. Logo,

$$|S(t)u_n - S(t)v_n| = |S(t)\underbrace{(u_n - v_n)}_{\in D(A)}| \le |u_n - v_n|.$$

Em virtude que $(u_n - v_n) \in D(A)$, podemos usar o fato mencionado em (1.12). Assim, fazendo $n \to +\infty$, teremos

$$|\widetilde{S}(t)u_n - \widetilde{S}(t)v_n| \le |u_0 - v_0|,$$

o que nos diz que $\widetilde{S}(t)$ é uma contração em H. Por convenção , denotaremos de agora em diante, $\widetilde{S}(t) = S(t)$, isto é, $S(t) \in \mathcal{L}(H)$.

Definição 1.61. S(t)é chamado Semigrupo gerado por -A.

Veja que S(t) é gerado por -A decorre do fato que

$$\lim_{h \to 0} \frac{S(h)u_0 - u_0}{h} = \lim_{h \to 0} \frac{u(h) - u(0)}{h} = \frac{d}{dt}u(0) = -Au(0) = -Au_0.$$

Ademais, S(t) satisfaz as seguintes propriedades:

39

Proposição 1.62. Seja $S(t) \in \mathcal{L}(H)$, semigrupo gerado por -A. Para todo $t \geq 0$, temos:

- i) $S(0) = I_H \ e \ S(t_1 + t_2) = S(t_1) \circ S(t_2); \ \forall t_1, t_2 \ge 0.$
- $|S(t)u_0| \le |u_0|, \quad \forall u_0 \in H, \quad \forall t \ge 0.$
- iii) $\lim_{t\to 0} |S(t)u_0 u_0| = 0 \quad \forall u_0 \in H.$

Demonstração: Ver Gomes [16].

Através da teoria de semigrupos, podemos obter a recíproca do Teorema de Hille-Yosida, ou seja, podemos estabelecer uma correspondência

bijetiva entre operadores maximais monótonos e semigrupos contínuos de contrações.

Teorema 1.63. Se S(t) é semigrupo contínuo de contrações, então existe um único operador maximal monótono A em H, tal que $(S(t))_{t\geq 0}$ é o semigrupo gerado por -A.

Demonstração: Ver Gomes [16].

A seguir, veremos outras propriedades de semigrupos, dentre as quais, com respeito a diferencial de um semigrupo.

Proposição 1.64. Seja S(t) um semigrupo gerado por -A. Temos as seguintes propriedades:

i) Se $u_0 \in D(A)$, então $S(t)u_0 \in D(A)$

e ainda,

$$\frac{d}{dt}S(t)u_0 = -AS(t)u_0 = S(t)Au_0.$$

- ii) Se $u_0 \in H$, então $\int_0^t S(s)u_0 ds \in D(A), \forall t \geq 0$.
- *iii*) $A\left(\int_0^t S(s)u_0 \, ds\right) = S(t)u_0 u_0.$

Demonstração: Ver Gomes [16].

Definição 1.65. Se A e -A são operadores maximais monótonos, nós podemos definir $S_A(t)$ e $S_{-A}(t)$ semigrupos gerados por A e -A, respectivamente.

Definamos

$$S_A(t) = S(t); \quad t > 0;$$

$$S_{-A}(t) = S(-t); \quad t \le 0.$$

Claramente, $S_A(t)$ e $S_{-A}(t)$ são semigrupos, pois são restrições do semigrupo S(t).

Proposição 1.66. Sejam $S_A(t)$ e $S_{-A}(t)$ definidos acima. Então, temos que

$$S_A(t) = [S_{-A}(t)]^{-1}.$$

Demonstração: Ver Gomes [16].

Proposição 1.67. Se A é maximal monótono, é necessário e suficiente que A* também seja maximal monótono.

Demonstração: Ver Gomes [16].

Proposição 1.68. Seja S(t) semigrupo gerado por -A. Se A^* existe, então $S^*(t) = S(t)^*$ é o semigrupo gerado por $-A^*$.

Demonstração: Ver Gomes [16].

Proposição 1.69. Considere $S_A(t), S_{-A}(t)$ definidos em (1.65). Então:

- $i) \quad S(0) = I;$
- *ii*) $S(t_1 + t_2) = S(t_1) \circ S(t_2); \quad \forall t_1, t_2 \in \mathbb{R};$
- iii) $|S(t)u_0| = |u_0|; \forall u_0 \in H, \forall t \in \mathbb{R}.$

S(t) é dito grupo de operadores unitários sobre H.

Demonstração: Ver Gomes [16].

Definição 1.70. A é anti-adjunto se A=-A.

Proposição 1.71. A é anti-adjunto se, e somente se, A e -A são operadores maximais monótonos.

Demonstração: Ver Gomes [16].

Corolário 1.72. Se A é anti-adjunto, então para todo $u \in D(A)$ temos que

$$||u(t)||^2 = cte.$$

Demonstração: Ver Gomes [16].

1.9 Equações Não Lineares

Estaremos interessados em resolver o seguinte problema:

$$\begin{cases}
\frac{du}{dt} + Au = F(u(t)); & \text{em } [0, T] \\
u(0) = u_0
\end{cases}$$
(1.13)

onde $F: H \to H$ é contínua. Temos a seguinte definição:

Definição 1.73. Se $u \in C([0,T];H)$ satisfaz o problema (1.13) u é dita solução generalizada. Se $u \in C^1([0,T];H) \cap C([0,T];D(A))$, a solução de (1.13) é dita <u>clássica</u>. Em ambos os casos, u satisfaz a equação integral

$$u(t) = S(t)u_0 + \int_0^t S(t-s)F(s)ds.$$

Teorema 1.74. Seja $F: H \to H$ uma função Lipschitiziana, ou seja,

$$|Fu - Fv| \le |v - u|, \forall u, v \in H.$$

Então:

i) Para toda $u_0 \in H$ existe uma única $u \in C([0, +\infty[; H)]$ que é solução generalizada. Se $u_0, \widetilde{u}_0 \in H$ valores iniciais respectivos as soluções u(t) e $\widetilde{u}(t)$ então

$$|u(t) - \widetilde{u}(t)| \le e^{Lt}|u_0 - \widetilde{u}_0|.$$

ii) Se $u_0 \in D(A)$, a solução é clássica.

Demonstração: Ver [7].

Teorema 1.75. Seja $F: D(A) \to D(A)$ Lipschitz-Contínua. Se $u_0 \in D(A)$, então existe uma solução clássica de (1.13).

Demonstração: Ver [7].

Teorema 1.76. Seja $F: H \to H$ localmente Lipschitz, ou seja, para todo M > 0 existe $L_M > 0$ tal que $|u| \le M$ e $|v| \le M$ implica que $|Fu - Fv| \le L_M |u - v|$.

Então, para toda $u_0 \in H$ existe u solução generalizada de (1.74) em [0,T] e esta pode ser extendida em uma solução maximal sobre $[0,T_{\max}]$ com

$$T_{\text{max}} = +\infty \ ou \quad T_{\text{max}} < +\infty \ e \lim_{t \to +\infty} |u(t)| = +\infty.$$

Se $u_0 \in D(A)$, a solução é clássica.

Demonstração: Ver [7].

Observação 1.77. Podemos transferir todos os resultados de imersões de Sobolev, regularidade, etc, vistos em abertos do \mathbb{R}^n para uma variedade compacta \mathcal{M} , cobrindo \mathcal{M} com vizinhanças coordenadas, aplicando os resultados em \mathbb{R}^n em coordenadas normais, e somando o resultado obtido através da partição da unidade.

1.10 Um Repasso A Geometria Diferencial

Nesta seção introduziremos algumas terminologias e notações que nos serão necessárias no decorrer desta dissertação. Para tal comecemos definindo o conceito de diferencial de uma aplicação.

1.10.1 Superfície Regular

Definição 1.78. Seja $F: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação diferenciável. Associamos a cada $p \in U$ (onde U é um aberto de \mathbb{R}^n) uma aplicação linear $dF_p: \mathbb{R}^n \to \mathbb{R}^m$ que é chamada de

diferencial de F em p, e é definida da seguinte maneira. Sejam $w \in \mathbb{R}^n$ e $\alpha : (-\varepsilon, \varepsilon) \to U$ uma curva diferenciável tal que $\alpha(0) = p$ e $\alpha'(0) = w$. Pela regra da cadeia, a curva $\beta = F \circ \alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}^m$ também é diferenciável. Então

$$dF_p(w) = \beta'(0).$$

Proposição 1.79. A definição dada acima para dF_p não depende da escolha da curva que passa por p com vetor tangente w, e dF_p é, de fato, uma aplicação linear.

Demonstração: ver [36]

Uma das vantagens da noção de diferencial de uma aplicação é que ela nos permite expressar muitos fatos do Cálculo em uma linguagem geométrica. Dando continuidade definiremos o seguinte

Definição 1.80. Um subconjunto $S \subset \mathbb{R}^3$ é uma superfície regular se, para cada $p \in S$, existe uma vizinhança V de p em \mathbb{R}^3 e uma aplicação $\mathbf{x}: U \to V \cap S$ de um aberto U de \mathbb{R}^2 sobre $V \cap S \subset \mathbb{R}^3$ tal que

- 1. **x** é diferenciável
- 2. \mathbf{x} é um homeomorfismo. Como \mathbf{x} é contínua pela condição 1, isto significa que \mathbf{x} tem inversa $\mathbf{x}^{-1}: V \cap S \to U$ que é contínua.
- 3. (condição de regularidade)Para todo $q \in U$, a diferencial $d\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ é injetiva.

A aplicação \mathbf{x} é chamada parametrização ou sistema de coordenadas (locais) em (uma vizinhança de) p. A vizinhança $V \cap S$ de p em S é chamada uma vizinhança coordenada. Mais geral, podemos definir o conceito de superfície abstrata (variedade diferenciável de dimensão 2) como o seguinte

Definição 1.81. Uma superfície abstrata (variedade diferenciável de dimensão 2) é um conjunto S munido de uma família de aplicações injetivas $\mathbf{x}_{\alpha}: U_{\alpha} \to S$ de conjuntos abertos $U_{\alpha} \subset \mathbb{R}^2$ em S tal que

1.
$$\bigcup_{\alpha} \mathbf{x}_{\alpha}(U_{\alpha}) = S$$
.

2. Para cada par α, β com $\mathbf{x}_{\alpha}(U_{\alpha}) \cap \mathbf{x}_{\alpha}(U_{\beta}) = W \neq \emptyset$, temos que $\mathbf{x}_{\alpha}^{-1}(W)$, $\mathbf{x}_{\beta}^{-1}(W)$ são conjuntos abertos em \mathbb{R}^2 , e $\mathbf{x}_{\beta}^{-1} \circ \mathbf{x}_{\alpha}$, $\mathbf{x}_{\alpha}^{-1} \circ \mathbf{x}_{\beta}$ são aplicações diferenciáveis.

O par $(U_{\alpha}, \mathbf{x}_{\alpha})$ com $p \in \mathbf{x}_{\alpha}(U_{\alpha})$ é chamado uma parametrização (ou sistema de coordenadas) de S em torno de p. Dizemos que $\mathbf{x}_{\alpha}(U_{\alpha})$ é uma vizinhança coordenada, e se $q = \mathbf{x}_{\alpha}(u_{\alpha}, v_{\alpha}) \in S$, que (u_{α}, v_{α}) são as coordenadas de q neste sistema de coordenadas. A família $\{U_{\alpha}, \mathbf{x}_{\alpha}\}$ é chamada uma estrutura diferenciável em S.

Segue-se imediatamente da condição 2 que a "mudança de parâmetros"

$$\mathbf{x}_{\beta}^{-1} \circ \mathbf{x}_{\alpha} : \mathbf{x}_{\alpha}^{-1}(W) \to \mathbf{x}_{\beta}^{-1}(W)$$

é um difeomorfismo.

Definição 1.82. Seja $f: V \subset S \to \mathbb{R}$ uma função, definida em um subconjunto aberto V de uma superfície regular S. Então f é diferenciável em $p \in V$ se, para alguma parametrização $\mathbf{x}: U \subset \mathbb{R}^2 \to S$, com $p \in \mathbf{x}(U) \subset V$, a composição $f \circ \mathbf{x}: U \subset \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em $\mathbf{x}^{-1}(p)$. A função f é diferenciável em V se é diferenciável em todos os pontos de V.

Exemplo 1.83. Se $\mathbf{x}:U\subset\mathbb{R}^2\to S$ é uma parametrização, $\mathbf{x}^{-1}:\mathbf{x}(U)\to\mathbb{R}^2$ é diferenciável.

A definição de diferenciabilidade pode ser facilmente estendida a aplicações entre superfícies.

Definição 1.84. Diremos que uma aplicação contínua $\varphi: V_1 \subset S_1 \to S_2$, de um conjunto aberto V_1 de uma superfície regular S_1 em uma superfície regular S_2 , é diferenciável em $p \in V_1$ se , dadas parametrizações $\mathbf{x}: U_1 \subset \mathbb{R}^2 \to S_1$, $\mathbf{y}: U_2 \subset \mathbb{R}^2 \to S_2$ com $p \in \mathbf{x}(U_1)$ e $\varphi(\mathbf{x}(U_1)) \subset \mathbf{y}(U_2)$, a aplicação

$$\mathbf{y}^{-1} \circ \varphi \circ \mathbf{x} : U_1 \to U_2$$

 \acute{e} diferenciável em $q = \mathbf{x}^{-1}(p)$.

Definição 1.85. Uma superfície regular S é orientável se for possível cobrí-la com uma família de vizinhanças coordenadas, de tal modo que se um ponto $p \in S$ pertence a duas vizinhanças dessa família, então a mudança de coordenadas tem Jacobiano positivo em p. A escolha de uma tal família é chamada uma orientação de S, e S, neste caso, diz-se orientada. Se uma tal escolha não é possível, a superfície é não-orientável. Se S é orientada, uma parametrização (local) \mathbf{x} é compatível com a orientação de S se, juntando \mathbf{x} à família de parametrizações dada pela orientação, obtém-se ainda uma (logo, a mesma) orientação de S.

Proposição 1.86. Uma superfície regular $S \subset \mathbb{R}^3$ é orientável se, e somente se existe um campo diferenciável $N: S \to \mathbb{R}^3$ de vetores normais em S.

Demonstração: ver [36]

Seja $M \subset \mathbb{R}^3$ uma superfície regular, orientada, compacta e sem bordo e consideremos $\{U_{\alpha}, \mathbf{x}_{\alpha}\}_{1 \leq \alpha \leq k}$ sua estrutura diferenciável. Por simplicidade de notação omitiremos o índice α . Assim sendo, denotando as coordenadas de $U_{\alpha} \equiv U$ por (u, v) e $\mathbf{x}_{\alpha} \equiv \mathbf{x}$ então o espaço tangente T_pM é gerado por $\{\mathbf{x}_u, \mathbf{x}_v\}$. Para um ponto dado $p \in \mathbf{x}(U) \subset M$, as componentes dos vetores tangentes \mathbf{x}_u e \mathbf{x}_v dependem da parametrização mas T_pM independe.

O conjunto

$$TM = \{(p, v); p \in M \text{ e } v \in T_p M\}$$
 (1.14)

é denominado fibrado tangente.

Para um ponto $p = \mathbf{x}(u, v) \in M$ consideremos a matriz

$$M := \begin{pmatrix} \langle \mathbf{x}_u, \mathbf{x}_u \rangle & \langle \mathbf{x}_u, \mathbf{x}_v \rangle \\ \langle \mathbf{x}_v, \mathbf{x}_u \rangle & \langle \mathbf{x}_v, \mathbf{x}_v \rangle \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$
(1.15)

onde $\langle .,. \rangle$ denota o produto interno euclidiano. A primeira Forma Fundamental sobre a superfície M é a restrição do produto interno euclidiano sobre o T_pM , isto é, denotando-se

$$X = x_1 \mathbf{x}_u + x_2 \mathbf{x}_v \text{ e } Y = y_1 \mathbf{x}_u + y_2 \mathbf{x}_v$$

então

$$\langle .,. \rangle : T_p M \times T_p M \longrightarrow \mathbb{R}$$

$$(X,Y) \longmapsto \langle X,Y \rangle \tag{1.16}$$

A métrica sobre M é simplesmente induzida do espaço ambiente, por sua própria definição.

1.10.2 O Gradiente

O gradiente tangencial denotado por $\nabla_T f$ de uma função $f: V \to \mathbb{R}$ de classe C^1 , definida em uma vizinhança V (aberta) de uma superfície M é dado por:

$$\nabla_T f := \nabla_{\mathbb{R}^3} f - \langle \nabla_{\mathbb{R}^3} f, \nu \rangle \nu \tag{1.17}$$

onde $\nu:M\to S^2$ é a aplicação normal de Gauss.

Definição 1.87. O gradiente tangencial geométrico de uma função diferenciável $f: M \to \mathbb{R}$, é uma função diferenciável $\nabla_M f: M \to \mathbb{R}^3$ que associa a cada ponto $p \in M$ um vetor $\nabla_M f(p) \in T_p M$ tal que

$$\langle \nabla_M f(p), v \rangle = df_p \cdot v \,; \quad \forall v \in T_p M$$
 (1.18)

Se E, F e G são os coeficientes da primeira forma quadrática definidos em (1.15) então o gradiente geométrico tangencial sobre $\mathbf{x}(U)$ é dado por

$$\nabla_M f = \frac{f_u G - f_v F}{EG - F^2} \mathbf{x}_u + \frac{f_v E - f_u F}{EG - F^2} \mathbf{x}_v$$
(1.19)

onde $f_u = (f \circ \mathbf{x})_u$ e $f_v = (f \circ \mathbf{x})_v$.

As vezes costuma-se representar o gradiente tangencial em coordenadas locais por:

$$\nabla_M f = [\mathbf{x}_u \ \mathbf{x}_v] M^{-1} [f_u \ f_v]^T$$
 (1.20)

onde

$$M^{-1} = \frac{1}{\det M} \begin{bmatrix} G & -F \\ -F & E \end{bmatrix}$$
 (1.21)

e M é dada por (1.15); note que (1.20) é exatamente a expressão dada em (1.19). Convém observar também que de (1.17) e (1.18) segue que o gradiente tangencial $\nabla_T u$ definido em (1.17) e o gradiente geométrico clássico coincidem.

Um campo vetorial q sobre M é uma correspondência que associa a cada $p \in M$ um vetor $\omega(p) \in T_pM$. Um campo vetorial ω é diferenciável em $p \in M$ se as funções a(.) e b(.) dadas por

$$\omega(p) = a(p)\mathbf{x}_u + b(p)\mathbf{x}_v$$

são diferenciáveis em p.

1.10.3 O Divergente

Dado X campo vetorial em M, (u, v) o sistema de coordenadas em M e $(\mathbf{X}_u, \mathbf{X}_v)$ campos coordenados, temos $X = a\mathbf{X}_u + b\mathbf{X}_v$, definimos o divergente do campo X por

$$divX(p) := Tr \left(\begin{array}{ccc} T_pM & \longrightarrow & T_pM \\ w & \longmapsto & (\nabla_w X)(p) \end{array} \right)$$

onde $\nabla_w X = \nabla_w (a\mathbf{X}_u + b\mathbf{X}_v) = w(a)\mathbf{X}_u + a\nabla_w \mathbf{X}_u + w(b)\nabla_w \mathbf{X}_v + b\nabla_w \mathbf{X}_v$ Em particular

$$\nabla_{\mathbf{X}_{u}} X = \mathbf{X}_{u}(a) \mathbf{X}_{u} + a \nabla_{\mathbf{X}_{u}} \mathbf{X}_{u} + \mathbf{X}_{u}(b) \mathbf{X}_{v} + b \nabla_{\mathbf{X}_{u}} \mathbf{X}_{v}$$

$$= \mathbf{X}_{u}(a) \mathbf{X}_{u} + a \Gamma_{uu}^{u} \mathbf{X}_{u} + a \Gamma_{uv}^{u} \mathbf{X}_{v}$$

$$+ \mathbf{X}_{u}(b) \mathbf{X}_{v} + b \Gamma_{uu}^{v} \mathbf{X}_{u} + b \Gamma_{uv}^{v} \mathbf{X}_{v}$$

$$= \mathbf{X}_{v}(a) \mathbf{X}_{u} + a \nabla_{\mathbf{X}_{v}} \mathbf{X}_{u} + \mathbf{X}_{v}(b) \mathbf{X}_{v} + b \nabla_{\mathbf{X}_{v}} \mathbf{X}_{v}$$

$$= \mathbf{X}_{v}(a) \mathbf{X}_{u} + a \Gamma_{vu}^{u} \mathbf{X}_{u} + a \Gamma_{vv}^{u} \mathbf{X}_{v}$$

$$+ \mathbf{X}_{v}(b) \mathbf{X}_{v} + b \Gamma_{vv}^{v} \mathbf{X}_{u} + b \Gamma_{vv}^{v} \mathbf{X}_{v}$$

Logo $divX = \mathbf{X}_u(a) + a\Gamma^u_{uu} + b\Gamma^v_{uu} + a\Gamma^u_{vv} + \mathbf{X}_v(b) + b\Gamma^v_{vv}$ aqui ∇_w denota a derivada covariante, e Γ^k_{ij} são os símbolos de Christoffel.

1.10.4 O Operador Laplace-Beltrami

O operador Laplace-Beltrami, denotado por $\Delta_M f$ de uma função $f:M\to\mathbb{R}$ de classe C^2 é definido por:

$$\Delta_M f = div_T \nabla_T f \tag{1.22}$$

podemos escrever o operador Laplace-Beltrami em coordenadas locais por:

$$\Delta_M f = \frac{1}{\sqrt{\det(M)}} \begin{bmatrix} \frac{\partial}{\partial u} & \frac{\partial}{\partial v} \end{bmatrix} \sqrt{\det(M)} M^{-1} [f_u \ f_v]^T$$
 (1.23)

Seja $q:\mathbb{R}^3\to\mathbb{R}^3$ um campo de vetores. De forma análoga a definição dada em (1.17) definimos a projeção tangencial q_T sobre T_pM por:

$$q_T := q - \langle q, \nu \rangle \nu \tag{1.24}$$

No caso particular do campo

$$m(x, y, z) = (x, y, z) - (x_0, y_0, z_0) \quad (x, y, z) \in \mathbb{R}^3$$
 (1.25)

calculemos $d_p[m_T]: T_pM \to T_pM$.

Para isto, tomemos $w\in T_pM$ e seja $\alpha:(-\varepsilon,\varepsilon)\to M$ um caminho diferenciável tal que $\alpha(0)=p$ e $\alpha'(0)=w$. Então

$$d_{p}[m_{T}].w = \frac{d}{dt}[(m_{T} \circ \alpha)(t)]|_{t=0}$$

$$= \frac{d}{dt}\left[m(\alpha(t)) - \langle m(\alpha(t)), \nu(\alpha(t))\rangle\nu(\alpha(t))\right]|_{t=0}$$

$$= [m'(\alpha(t))\alpha'(t) - \langle m'(\alpha(t))\alpha'(t), \nu(\alpha(t))\rangle\nu(\alpha(t)) \qquad (1.26)$$

$$- \langle m(\alpha(t)), d_{p}\nu(\alpha(t))\alpha'(t)\rangle\nu(\alpha(t)) - \langle m(\alpha(t)), \nu(\alpha(t))\rangle d_{p}\nu(\alpha(t))\alpha'(t)]|_{t=0}$$

Por outro lado, pondo $\alpha(t)=(x(t),y(t),z(t))$ resulta que

$$m'(\alpha(t)).\alpha'(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'(t) \\ y'(y) \\ z'(t) \end{bmatrix} = \begin{bmatrix} x'(t) \\ y'(y) \\ z'(t) \end{bmatrix} = \alpha'(t)$$
 (1.27)

Então, combinando (1.28) e (1.27) em t = 0, obtemos:

$$d_p[m_T].w = \left[w - \langle w, \nu(p) \rangle \nu(p) - \langle m(p), d_p \nu(p).w \rangle \nu(p) - \langle m(p), \nu(p) \rangle d_p \nu(p).w\right]$$

Donde

$$d_p[m_T].w = \left[w - \langle m(p), \nu(p) \rangle d_p \nu(p).w\right]$$
(1.28)

Para superfícies de codimensão 1, a curvatura pode ser expressa pelo operador forma B (segunda forma fundamental) o qual é, usando gradientes tangenciais, dado pela matriz

$$B := \nabla_T \nu = -d_p \nu(p) \tag{1.29}$$

combinando (1.28) e (1.29) resulta que

$$d_{p}[m_{T}].w = \left[w + \langle m(p), \nu(p) \rangle Bw\right] \; ; \; \forall w \in T_{p}M \tag{1.30}$$

de (1.30) resulta que

$$d_p[m_T] = I + \langle m(p), \nu(p) \rangle B \tag{1.31}$$

Foquemos nossa atenção no operador forma $B:T_pM\to T_pM$. Existe uma base ortonormal $\{e_1,e_2\}$ de T_pM tal que $Be_1=k_1e_1$ e $Be_2=k_2e_2$, onde k_1 e k_2 são as curvaturas principais de M em p. A matriz B com respeito a esta base $\{e_1,e_2\}$ é dada por

$$B := \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \tag{1.32}$$

Logo, de (1.31) e (1.32) podemos escrever:

$$div_T[q_T]$$
 = traço da matriz $[I + \langle m, \nu \rangle B]$
= $2 + (m.\nu)Tr(B)$
= $2 + 2(m.\nu)H$ (1.33)

onde $H = \frac{TrB}{2}$ é a curvatura média de M em p.

Agora observe que, dado $f \in C(M)$ no caso n-dimensional, temos

$$div(fq)(p) := Tr(e_i \longmapsto (\nabla_{e_i}(fq)(p)))$$

$$= Tr(e_i \longmapsto f(p)\nabla_{e_i}q(p) + e_i(f)q(p))$$

$$= f(p)Tr(e_i \longmapsto \nabla_{e_i}q(p)) + \sum_{i=1}^n \langle e_i(f).q(p), e_i \rangle$$

Então

$$div(fq)(p) = f(p)div q(p) + \sum_{i=1}^{n} e_i(f)\langle q(p), e_i \rangle$$

$$= f(p)div q(p) + \sum_{i=1}^{n} \langle \nabla f(p), e_i \rangle \langle q(p), e_i \rangle$$

$$= f(p)div q(p) + \langle \nabla f(p), q(p) \rangle$$

onde $\{e_1, \ldots, e_n\}$ é uma base ortonormal de T_pM .

Para o nosso caso, onde a dimensão é dois, obtemos

$$div_T(fq) = \nabla_T f \cdot q + f div_T q \tag{1.34}$$

onde $\nabla_T f \cdot q$ indica o produto interno.

Considere agora $f,g:M\to\mathbb{R}$ funções diferenciáveis e calculemos $\nabla_T(fg)$. Por definição, temos:

$$\langle \nabla_T(fg)(p), w \rangle = d_p N(fg).w \; ; \; \forall w \in T_p M$$
 (1.35)

mas
$$\langle \nabla_T (fg), w \rangle = d(fg)(w) = w(fg)$$

$$= w(f)g + fw(g)$$

$$= \langle g\nabla_T f, w \rangle + \langle f\nabla_T g, w \rangle$$
 (1.36)

Portanto, de (1.35) e (1.36) obtemos:

$$\langle \nabla_T(fg)(p), w \rangle = f(p) \langle \nabla_T g(p), w \rangle + g(p) \langle \nabla_T f(p), w \rangle$$

ou ainda,

$$\nabla_T(fg)(p) = f(p)\nabla_T g(p) + g(p)\nabla_T f(p)$$
(1.37)

De (1.37) e, em particular,

$$\nabla_T(f^2)(p) = 2f(p)\nabla_T f(p)$$

e sendo $q = q_1 \mathbf{x}_u + q_2 \mathbf{x}_v$ um campo diferenciável, resulta que

$$q \cdot \nabla_T(f^2) = 2f(q \cdot \nabla_T f) \tag{1.38}$$

Sendo X um campo vetorial regular sobre uma superfície regular M com bordo ∂M suave, o Teorema da Divergência de Gauss nos diz que

$$\int_{M} div_{T} X dM = \int_{\partial M} \langle X, \nu \rangle dM \tag{1.39}$$

onde ν é o campo normal unitário exterior à ∂M . Quando M é uma superfície sem bordo a contribuição de fronteira é nula e desta forma, tomando-se X=fg de (1.34) e (1.39) resulta que

$$\int_{M} (div_{T}q)f \, dM = -\int_{M} (q \cdot \nabla_{T}f) dM \tag{1.40}$$

esta é conhecida como fórmula de Gauss. Resulta de (1.40) em particular para $q = \nabla_T f$ (f de classe C^2) e f = g (g de classe C^1), que

$$\int_{M} (div_{T} \nabla_{T} f) g \, dM = -\int_{M} \nabla_{T} f \cdot \nabla_{T} g \, dM$$

ou seja,

$$\int_{M} \Delta_{M} f g dM = -\int_{M} \nabla_{T} f \cdot \nabla_{T} g dM \qquad (1.41)$$

conhecida como a fórmula de Green.

Denotaremos por $L^2(M,TM)$ o completado das seções em TM com produto interno dado por

$$(\phi, \psi)_{TM} = \int_{M} \langle \phi, \psi \rangle_{p} dTM$$

e por $L^2(M)$ o completado de $C^{\infty}(M)$ com produto interno usual

$$(f,g)_{L^2(M)} = \int_M f(x)g(x)dM$$
 (1.42)

O espaço de Sobolev $H^1(M)$ é o completado de $C^{\infty}(M)$ com respeito a norma

$$||f||_{H^{1}(M)}^{2} = ||\nabla_{T}f||_{L^{2}(M,TM)}^{2} + ||f||_{L^{2}(M)}$$
(1.43)

De modo a simplificar a notação, denotaremos a norma L^2 , sem distinguir quando o argumento da norma é uma função ou um tensor. Tendo isto em mente e usando o operador Δ_M sobre M podemos dar uma definição mais intrínseca dos espaços $H^s(M)$ considerando

$$H^{2m}(M) = \left\{ u \in L^2(M) \; ; \; \Delta_M^m u \in L^2(M) \right\} \tag{1.44}$$

o qual dotado com a norma canônica

$$||u||_{H^{2m}(M)}^2 = ||u||_{L^2(M)}^2 + ||\Delta_M^m u||_{L^2(M)}^2$$
(1.45)

é um espaço de Hilbert. Convém observar que as fórmulas integrais de Green, Gauss, dentre outras podem ser estendidas aos espaços de Sobolev usando a densidade de $C^{\infty}(M)$ em $H^s(M)$. Por exemplo, sendo M uma superfície compacta sem bordo, então temos os seguintes teoremas:

Teorema 1.88. (Teorema de Gauss)- Se Υ é um campo vetorial pertencente a $(H^2(M))^2$ e $q \in H^1(M)$ então

$$\int_{M} (div\Upsilon)q \, dM = -\int_{M} \Upsilon \cdot \nabla q \, dM.$$

Teorema 1.89. (Teorema de Green)- Se $f \in H^2(M)$ e $g \in H^1(M)$, temos

$$\int_{M} (\Delta_{M} f) g \, dM = - \int_{M} \nabla f \cdot \nabla g \, dM.$$

Considere $\mathcal{M} \subset \mathbb{R}^3$, uma superfície compacta, orientada e sem bordo de classe C^3 de \mathbb{R}^3 . Sejam

$$V = \{ v \in H^1(\mathcal{M}) ; \int_{\mathcal{M}} v d\mathcal{M} = 0 \} \in G = \{ v \in V ; \Delta v \in L^2(\mathcal{M}) \}$$
 (1.46)

Então V é um espaço de Hilbert munido da topologia induzida por $H^1(\mathcal{M})$.

De fato, que V é um espaço vetorial está claro. Mostraremos que V é fechado. Sejam $u \in \overline{V}^{H^1(\mathcal{M})}$, e $(u_{\nu})_{\nu \in \mathbb{N}} \subset V$ tal que $u_{\nu} \to u$ em $H^1(\mathcal{M})$. Como $u_{\nu} \in V$ então

$$\int_{\mathcal{M}} u_{\nu} d\mathcal{M} = 0 \quad \forall \nu \in \mathbb{N}$$
(1.47)

Observe também que

$$||u_{\nu} - u_{\sigma}||_{H^{1}(\mathcal{M})}^{2} = ||u_{\nu} - u_{\sigma}||_{L^{2}(\mathcal{M})}^{2} + ||\nabla(u_{\nu} - u_{\sigma})||_{L^{2}(\mathcal{M})}^{2} \to 0$$

quando $\nu, \sigma \to \infty$, donde $||u_{\nu} - u_{\sigma}||_{L^{2}(\mathcal{M})} \to 0$. Sendo $L^{2}(\mathcal{M})$ espaço de Hilbert, existe $v \in L^{2}(\mathcal{M})$ tal que $v_{\nu} \to v$ em $L^{2}(\mathcal{M})$. Como \mathcal{M} compacta de classe C^{3} , então $L^{2}(\mathcal{M}) \hookrightarrow L^{1}(\mathcal{M})$.

Por outro lado, pela unicidade do limite em $L^2(\mathcal{M})$, temos u=v, e pela imersão citada acima, temos

$$\int_{\mathcal{M}} |u_{\nu} - u| d\mathcal{M} \longrightarrow 0 \text{ quando } \nu \to \infty.$$

Donde

$$\left| \int_{\mathcal{M}} (u_{\nu} - u) d\mathcal{M} \right| \leq \int_{\mathcal{M}} |u_{\nu} - u| d\mathcal{M} \to 0 \text{ quando } \nu \to \infty.$$

ou seja, $\int_{\mathcal{M}} u_{\nu} d\mathcal{M} \to \int_{\mathcal{M}} u d\mathcal{M}$, e por (1.47) segue que $0 = \int_{\mathcal{M}} u_{\nu} d\mathcal{M} \to \int_{\mathcal{M}} u d\mathcal{M}$ o que nos dá $\int_{\mathcal{M}} u d\mathcal{M} = 0$. Assim concluímos que $u \in V$. Portanto V é um subespaço fechado de $H^1(\mathcal{M})$ e sendo $H^1(\mathcal{M})$ um espaço de Hilbert segue que V munido da norma induzida de $H^1(\mathcal{M})$ é um espaço de Hilbert.

Consideremos V e H munidos das seguintes normas, respectivamente

$$||u||_V = ||\nabla u||_{L^2(\mathcal{M})}$$

 $||u||_H = ||u||_V + ||\Delta u||_{L^2(\mathcal{M})}$

Provaremos a seguir que em V as normas $||u||_{H^1(\mathcal{M})}$ e $||u||_V$ são equivalentes.

Com efeito, que $||u||_V \leq ||u||_{H^1(\mathcal{M})}$ é imediato. Resta-nos provar que existe uma constante c>0 tal que

$$||u||_{L^{2}(\mathcal{M})} \le c||\nabla u||_{L^{2}(\mathcal{M})} = c||u||_{V} \tag{1.48}$$

Se u = 0 nada temos a provar.

Se $u \neq 0$ de (1.48) temos que

$$\frac{1}{c} \le \left\| \frac{u}{\|u\|_{L^2(\mathcal{M})}} \right\|_{V} \quad ; \quad \forall u \in V$$

Portanto basta mostrarmos que existe c > 0 tal que $\forall u \in V$ com $||u||_{L^2(\mathcal{M})} = 1$, tenhamos

$$||u||_V \ge \frac{1}{c} \tag{1.49}$$

Suponhamos que isso não ocorra, ou seja, para cada $n \in \mathbb{N}$ exista $u_n \in V$ com $||u||_{L^2(\mathcal{M})} = 1$ e no entanto

$$||u_n||_V < \frac{1}{n} \tag{1.50}$$

Tomando o limite na desigualdade acima quando $n \to \infty$ resulta que

$$\lim_{n \to \infty} \|u_n\|_V = 0 \tag{1.51}$$

Agora, de (1.50) e do fato que $||u_n||_{L^2(\mathcal{M})} = 1$; $\forall n \in \mathbb{N}$, temos:

$$||u_n||_{L^2(\mathcal{M})}^2 + ||u_n||_V^2 \le 1 + \frac{1}{n} \le 2 \tag{1.52}$$

o que implica que a sequência $(u_n)_{n\in\mathbb{N}}$ é limitada no espaço topológico $(V; \|\cdot\|_{H^1(\mathcal{M})})$. Sendo V um espaço de Hilbert com a topologia induzida de $H^1(\mathcal{M})$, existirá $(u_{\nu})_{\nu\in\mathbb{N}^*}$ subsequência de (u_n) e $u\in V$ tais que

$$u_{\nu} \rightharpoonup u \text{ fraco em } V$$
 (1.53)

Agora note, que a aplicação $v \in V \mapsto ||v||_V$ é convexa e semi-contínua inferiormente. Logo de (1.51) e (1.53), obtemos:

$$||u||_V \le \lim_{\nu \to \infty} ||u_{\nu}||_V = 0$$

Assim, $||u||_V = 0$ e portanto u = 0.

Por outro lado, em virtude da imersão $H^1(\mathcal{M}) \hookrightarrow L^2(\mathcal{M})$ ser compacta, de (1.52), após extração de uma eventual subsequência, obtemos

$$u_{\nu} \to u \text{ em } L^2(\mathcal{M})$$

o que implica que

$$||u_{\nu}||_{L^{2}(\mathcal{M})} \to ||u||_{L^{2}(\mathcal{M})}$$

e como $||u_{\nu}||_{L^{2}(\mathcal{M})} = 1$, $\forall \nu \in \mathbb{N}$, vem que $||u||_{L^{2}(\mathcal{M})} = 1$ o que é um absurdo!. Assim está provado (1.49) e por conseguinte as normas $||u||_{H^{1}(\mathcal{M})}$ e $||u||_{V}$ são equivalentes. Desta equivalência segue que o espaço $(V; ||\cdot||_{V})$ é um espaço de Hilbert.

Por outro lado, observemos que $G = \{v \in V : \Delta v \in L^2(\mathcal{M})\}$ é um espaço de Hilbert. Com efeito, como a norma em V e em $L^2(\mathcal{M})$ são provenientes de produto interno, então a norma em G é proveniente de produto interno.

Seja $(v_n)_{n\in\mathbb{N}}$ uma sequência de Cauchy em G. Como

$$||v_n - v_m||_H = ||v_n - v_m||_V + ||\Delta v_n - \Delta v_m||_{L^2(\mathcal{M})}$$

segue que (v_n) é de Cauchy em V e (Δv_n) é de Cauchy em $L^2(\mathcal{M})$. Como V e $L^2(\mathcal{M})$ são completos, existem $v \in V$ e $u \in L^2(\mathcal{M})$ tais que

$$v_n \longrightarrow v \text{ em } V$$

$$\Delta v_n \longrightarrow u \text{ em } L^2(\mathcal{M})$$

Resulta que $\Delta v = u$ em $\mathcal{D}'(\mathcal{M})$ e portanto, em $L^2(\mathcal{M})$. Logo $v \in G$, mostrando que G é um espaço de Hilbert.

Pelo Teorema Espectral, existe $\{w_{\nu}\}\subset D(A)$ tal que o conjunto das combinações lineares finitas dos w_{ν} é denso em W, o que implica que D(A) é denso em W.

Consideremos

$$W=V=\{u\in H^1(\mathcal{M})\;;\;\;\int_{\mathcal{M}}ud\mathcal{M}=0\}$$

$$H = L^2(\mathcal{M})$$

$$a(u,v) = \int_{\mathcal{M}} \nabla u \cdot \nabla v d\mathcal{M}$$

como $||u||_V = ||\nabla u||_{L^2(\mathcal{M})}$ é uma norma em V vem que a(u,v) é coerciva e, portanto, para $u \in D(A)$

$$(Au, v)_{L^{2}(\mathcal{M})} = \int_{\mathcal{M}} \nabla u \cdot \nabla v d\mathcal{M}$$
$$= (\nabla u, \nabla v)_{L^{2}(\mathcal{M})} ; \forall v \in V$$

Se $v \in C_0^{\infty}(\mathcal{M})$ obtemos

$$(Au, v) = \langle -\Delta u, v \rangle \; ; \; \forall v \in C_0^{\infty}(\mathcal{M})$$

Assim, $Au = -\Delta u$ em $\mathcal{D}(\mathcal{M})$, o que implica $Au = -\Delta u$, $\forall u \in D(A)$, onde $D(-\Delta) = V \cap H^2(\mathcal{M})$.

Com efeito, lembremos que

$$D(-\Delta) = \{u \in V \; ; \; -\Delta u \in L^2(\mathcal{M}) \text{ e verifica } a(u,v) = (-\Delta u,v) \, , \, v \in V\}.$$

mostraremos inicialmente que $V \cap H^2(\mathcal{M}) \subset D(-\Delta)$.

Seja $u\in V\cap H^2(\mathcal{M})$ e $v\in V$. Então, $u\in V,\; -\Delta u\in L^2(\mathcal{M})$ e pela fórmula de Green

$$a(u,v) = \int_{\mathcal{M}} \nabla u \nabla v d\mathcal{M} = \int_{\mathcal{M}} -\Delta u \, v \, d\mathcal{M} = (-\Delta u, v)$$

donde $V \cap H^2(\mathcal{M}) \subset D(-\Delta)$.

Mostraremos agora, a inclusão $D(-\Delta) \subset V \cap H^2(\mathcal{M})$.

Seja $u \in V$ tal que $a(u,v) = (-\Delta u,v), \ \forall v \in V$. Então pela fórmula de Green temos:

$$\int_{\mathcal{M}} \nabla u \nabla v d\mathcal{M} = \int_{\mathcal{M}} -\Delta u \, v \, d\mathcal{M} \,, \quad \forall v \in V$$

Sendo \mathcal{M} de classe C^3 temos em virtude da regularidade dos problemas elípticos que $u \in H^2(\mathcal{M})$, e naturalmente $u \in V$,

donde $D(-\Delta) \subset V \cap H^2(\mathcal{M})$, o que conclui a prova.

Nas condições acima, o Teorema Espectral nos garante a existência de uma base de $V \cap H^2(\mathcal{M})$ constituída pela autofunções do operador $-\Delta$, mais ainda temos

 $(w_{\nu})_{\nu\in\mathbb{N}}$ é um sistema ortonormal completo em $L^2(\mathcal{M})$.

$$\left(\frac{w_{\nu}}{\sqrt{\lambda_{\nu}}}\right)_{\nu\in\mathbb{N}}$$
 é um sistema ortonormal completo em V .

$$\left(\frac{w_{\nu}}{\lambda_{\nu}}\right)_{\nu\in\mathbb{N}}$$
 é um sistema completo em $V\cap H^2(\mathcal{M})$.

Como $V = \{u \in H^1(\mathcal{M}); \int_{\mathcal{M}} u d\mathcal{M} = 0\}$ é denso em $L^2(\mathcal{M})$ e o domínio do operador $-\Delta$, definido pela terna $\{V, L^2(\mathcal{M}); (\nabla u, \nabla v)_{L^2(\mathcal{M})}\}$, é o conjunto $V \cap H^2(\mathcal{M})$, resulta do Teorema Espectral que o conjunto $V \cap H^2(\mathcal{M})$ é denso em V.

Para fins de enunciar resultados mais gerais a seguir definamos o que é uma Variedade Riemanniana.

Definição 1.90. Uma métrica Riemanniana ou Estrutura Riemanniana em uma variedade diferenciável \mathcal{M} é uma lei que faz corresponder a cada $p \in \mathcal{M}$ um produto interno $\langle \cdot, \cdot \rangle_p$ no espaço tangente $T_p\mathcal{M}$, tal que, se $x: U \subset \mathbb{R}^n \to \mathcal{M}$ é um sistema de coordenadas locais em torno de p, com $x(x_1, \ldots, x_n) = q \in x(U)$ e $\frac{\partial}{\partial x_i}(q) = dx(0, \ldots, 1, \ldots, 0)$, então

$$\left\langle \frac{\partial}{\partial x_i}(q), \frac{\partial}{\partial x_i}(q) \right\rangle |_q = g_{ij}(x_1, \dots, x_n),$$

é uma função diferenciável em U. Uma variedade diferenciável com uma dada métrica Riemanniana chama-se uma Variedade Riemanniana.

Teorema 1.91. (Regularidade Global) Sejam \mathcal{M} uma variedade riemanniana compacta e Δ denota o laplaciano. Considere $u \in H^1(\mathcal{M})$ uma solução fraca para $\Delta u = f$. a) Se $f \in W^{m,p}(\mathcal{M})$, então $u \in W^{m+2,p}(\mathcal{M})$, e

$$||u||_{W^{m+2,p}(\mathcal{M})} \le C(||\Delta u||_{W^{m,p}(\mathcal{M})} + ||u||_{L^p(\mathcal{M})}).$$

b) Se $f \in C^{m,\alpha}(\mathcal{M})$, então $u \in C^{m+2,\alpha}(\mathcal{M})$, e

$$||u||_{C^{m+2,\alpha}(\mathcal{M})} \le C(||\Delta u||_{C^{m,\alpha}(\mathcal{M})} + ||u||_{C^{\alpha}(\mathcal{M})}).$$

Idéia da demonstração: Ver [28].

Teorema 1.92. (Imersão de Sobolev para variedade compacta com ou sem bordo) - Seja \mathcal{M} uma variedade compacta de dimensão n, (vale com fronteira C^1), então

- a) Se $\frac{1}{q} \ge \frac{1}{p} \frac{m}{n}$, então $W^{m,p}(\mathcal{M})$ está imerso continuamente em $L^q(\mathcal{M})$.
- b) (Teorema de Rellich-Kondrachov) A imersão acima é compacta, se a desigualdade é estrita.
- c) Se $\alpha \in (0,1)$, $e^{\frac{1}{p}} \leq \frac{k-\alpha}{n}$ então $W^{m,p}(\mathcal{M})$ está imerso continuamente em $C^{\alpha}(\overline{\mathcal{M}})$.
- d) Se $\frac{1}{s} \ge \frac{1}{n-1} \left(\frac{n}{p} m \right)$, então $W^{m,p}(\mathcal{M})$ está imerso continuamente em $L^s(\partial \mathcal{M})$.
- e) A imersão acima é compacta, se a desigualdade é estrita.

Demonstração: Ver [28].

Existência e Unicidade de Soluções

No que segue poderemos estar omitindo algumas variáveis afim de não sobrecarregar a notação e também denotaremos o operador Laplace-Beltrami $(\Delta_{\mathcal{M}})$ simplesmente por Δ .

Estudaremos a existência e unicidade do problema linear, ou seja, quando o termo de dissipativo é linear, para depois usar esse resultado afim de provar a existência e unicidade no caso não-linear. Utilizaremos o método de Faedo-Galerkin para estudar o seguinte problema de evolução.

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u + a(x)u_t = 0 & em \ \mathcal{M} \times (0, T) \\ u(0) = u_0 \ , \ u_t(0) = u^1 & em \ \mathcal{M} \end{cases}$$
 (2.1)

onde \mathcal{M} é uma superfície compacta orientada e sem bordo em \mathbb{R}^3 .

2.1 Problema Aproximado Para o Caso Linear

Seja $(w_j)_{j\in\mathbb{N}}$ uma base de V, que pelo processo de ortogonalização de Gram-Schmidt, podemos já supor que seja ortonormal em $L^2(\mathcal{M})$. Denotemos por

$$V_m = [w_1, w_2, \cdots, w_m]$$

o subespaço gerado pelos m primeiros vetores w_j . O problema aproximado consiste em determinar $u_m = \sum_{j=1}^m g_{jm} w_j \in V_m$ tal que satisfaça:

$$\begin{cases}
(u''_m(t), v) + (-\Delta u_m(t), v) + (a(x)u'_m(t), v) = 0 & para \ todo \ v \in V_m \\
u_m(0) = u_{0m} \to u^0 & em \ V \cap H^2(\mathcal{M}) \\
u'_m(0) = u_{1m} \to u^1 & em \ L^2(\mathcal{M})
\end{cases}$$
(2.2)

sabendo que vale a fórmula de Green, podemos fazer ainda $(-\Delta u_m(t), v) = (\nabla u_m(t), \nabla v)$, assim:

$$\begin{cases} (u''_m(t), v) + (\nabla u_m(t), \nabla v) + (a(x)u'_m(t), v) = 0 & para \ todo \ v \in V_m \\ u_m(0) = u_{0m} \to u^0 & em \ V \cap H^2(\mathcal{M}) \\ u'_m(0) = u_{1m} \to u^1 & em \ L^2(\mathcal{M}) \end{cases}$$
(2.3)

Substituindo $u_m = \sum_{j=1}^m g_{jm} w_j$ e tomando $w_r = v$ com $1 \le r \le m$ obtemos:

$$\begin{cases}
\left(\sum_{j=1}^{m} g''_{jm}(t)w_{j}, w_{r}\right) + \left(\sum_{j=1}^{m} g_{j}(t)\nabla w_{j}, \nabla w_{r}\right) + \left(a(x)\sum_{j=1}^{m} g'_{jm}(t)w_{j}, w_{r}\right) = 0 \\
u_{m}(0) = \sum_{j=1}^{m} g_{jm}(0)w_{j} = u_{0m} \to u^{0} \quad em \quad V \\
u'_{m}(0) = \sum_{j=1}^{m} g'_{jm}(0)w_{j} = u_{1m} \to u^{1} \quad em \quad L^{2}(\mathcal{M})
\end{cases} \tag{2.4}$$

A primeira equação ainda pode ser escrita como

 $g''_{jm}(t) + \sum_{j=1}^{m} g_{jm}(t)(\nabla w_j, \nabla w_r) + \sum_{j=1}^{m} g'_{jm}(t)(a(x)w_j, w_r) = 0$. Escrevendo na forma matricial, obtemos:

$$\begin{bmatrix} g_{1m}''(t) \\ g_{2m}''(t) \\ \vdots \\ g_{mm}''(t) \end{bmatrix} + \underbrace{\begin{bmatrix} (\nabla w_1, \nabla w_1) & (\nabla w_2, \nabla w_1) & \cdots & (\nabla w_m, \nabla w_1) \\ (\nabla w_1, \nabla w_2) & (\nabla w_2, \nabla w_2) & \cdots & (\nabla w_m, \nabla w_2) \\ \vdots & \vdots & \ddots & \vdots \\ (\nabla w_1, \nabla w_m) & (\nabla w_2, \nabla w_m) & \cdots & (\nabla w_m, \nabla w_m) \end{bmatrix}}_{z''(t)} \cdot \underbrace{\begin{bmatrix} g_{1m}(t) \\ g_{2m}(t) \\ \vdots \\ g_{mm}(t) \end{bmatrix}}_{z''(t)} \cdot \underbrace{\begin{bmatrix} (a(x)w_1, w_1) & (a(x)w_2, w_1) & \cdots & (a(x)w_m, w_1) \\ (a(x)w_1, w_2) & (a(x)w_2, w_2) & \cdots & (a(x)w_m, w_2) \\ \vdots & \vdots & \ddots & \vdots \\ (a(x)w_1, w_m) & (a(x)w_2, w_m) & \cdots & (a(x)w_m, w_m) \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} g'_{1m}(t) \\ g'_{2m}(t) \\ \vdots \\ g'_{mm}(t) \end{bmatrix}}_{z'(t)} = 0$$

Logo, obtemos a seguinte E.D.O

$$z''(t) + Az'(t) + Bz(t) = 0$$

onde A e B são as matrizes demarcadas acima. Temos o seguinte sistema de equações diferenciais ordinárias

$$\begin{cases} z''(t) + Az'(t) + Bz(t) = 0\\ z(0) = z_0, \quad z'(0) = z_1 \end{cases}$$
 (2.5)

Definamos:

$$Y_1(t) = z(t)$$

$$Y_2(t) = z'(t)$$

$$Y(t) = \begin{bmatrix} Y_1(t) \\ Y_2(t) \end{bmatrix}$$

Logo temos

$$Y'(t) = \begin{bmatrix} Y_1'(t) \\ Y_2'(t) \end{bmatrix} = \begin{bmatrix} z'(t) \\ z''(t) \end{bmatrix} = \begin{bmatrix} Y_2(t) \\ -AY_2(t) - BY_1(t) \end{bmatrix}$$
$$= \begin{bmatrix} 0 & I \\ -B & -A \end{bmatrix} \begin{bmatrix} Y_1(t) \\ Y_2(t) \end{bmatrix}$$
(2.6)

Denotando

$$\left[\begin{array}{cc} 0 & I \\ -B & -A \end{array}\right] = M$$

obtemos de (2.6) que,

$$Y'(t) = MY(t)$$

ou seja reduzimos o problema ao seguinte sistema

$$\begin{cases} Y'(t) = MY(t) \\ Y(0) = Y^0, Y'(0) = Y^1 \end{cases}$$
 (2.7)

Agora defina a função

$$F: \ \mathbb{R} \times \mathbb{R}^{2m} \longrightarrow \mathbb{R}^{2m}$$
$$(t, Y(t)) \longmapsto F(t, Y(t)) = MY(t)$$

Então chegamos ao seguinte sistema

$$\begin{cases} Y'(t) = F(t, Y(t)) \\ Y(0) = Y^0, \quad Y'(0) = Y^1 \end{cases}$$
 (2.8)

Mostraremos que o problema dado em (2.5) possui solução local utilizando o Teorema de Carathéodory. Para tanto, inicialmente, vamos verificar que a aplicação F satisfaz as condições de Carathéodory.

De fato, considere $D = [-T, T] \times B_b$, onde

$$B_b = \{ x \in \mathbb{R}^{2m}; \quad Y^0 \in B_b \ e \ |x| \le b \ , \ b > 0 \}$$

 \bullet F é contínua em relação a Y, para cada t fixo:

De fato, fixado t, tome $\varepsilon > 0$ qualquer.Considere $\delta = \frac{\varepsilon}{\|M\|}$ (note que $0 \neq \|M\| < \infty$). Então, se $Y^1, Y^2 \in B_b$ e $|Y^1 - Y^2| < \delta$, temos que

$$|F(t,Y^{1}(t)) - F(t,y^{2}(t))| = |MY^{1}(t) - MY^{2}(t)| \le ||M|| \cdot |Y^{1} - Y^{2}| < ||M|| \cdot \delta = \varepsilon$$

 \bullet F é contínua em relação a t , para cada Y fixo:

Fixado Y(t), temos que F não depende de t, isto é, F é uma constante e, portanto contínua.

•
$$|F(t, Y(t))| = |MY(t)| \le ||M|| \cdot |Y(t)| \le ||M|| \cdot b$$

Portanto das considerações acima, segue-se pelo Teorema de Carathéodory que existe uma solução Y(t) em $(-t_m,t_m)$, com $t_m < T$, de (2.7). Restringido esta solução a t positivo, vemos que existem, para todo m, $u_m(t), t \in [0,t_m)$, solução do problema aproximado.

2.1.1 Estimativas a Priori

• Primeira estimativa (permitirá prolongar a solução aproximada $u_m(t) \in V_m$ definida para todo $t \in [0, t_m)$ $e \ t_m < T$, a todo intervalo [0, T]).

Agora tomando $v=2u_m'(t)\in V_m$ em (2.3), obtemos

$$2(u''_m(t), u'_m(t)) + 2(\nabla u_m(t), \nabla u'_m(t)) + 2(a(x)u'_m(t), u'_m(t)) = 0$$

Donde

$$\frac{d}{dt} \left\{ \|u'_m(t)\|_{L^2(\mathcal{M})}^2 + \|\nabla u_m(t)\|_{L^2(\mathcal{M})}^2 \right\} + 2 \int_{\mathcal{M}} a(x) |u'_m(t)|^2 d\mathcal{M} = 0$$

integrando de 0 a t, com $t \in [0, t_m)$, obtemos

$$||u'_m(t)||_{L^2(\mathcal{M})}^2 + ||\nabla u_m(t)||_{L^2(\mathcal{M})}^2 + 2\int_0^t \int_{\mathcal{M}} a(x)|u'_m(x,s)|^2 d\mathcal{M}ds$$

$$= ||u'_m(0)||_{L^2(\mathcal{M})}^2 + ||\nabla u_m(0)||_{L^2(\mathcal{M})}^2 = ||u_{1m}||_{L^2(\mathcal{M})}^2 + ||\nabla u_{0m}||_{L^2(\mathcal{M})}^2$$

Por outro lado, do problema aproximado (2.3), temos que

 $u_{0m} \to u_0$ forte em V

e

 $u_{1m} \to u^1$ forte em $L^2(\mathcal{M})$.

Então existem constantes positivas C_1, C_2 , independentes de m, t e T tais que

$$||u_{1m}(t)||_{L^2(\mathcal{M})}^2 \le C_1 e ||\nabla u_{0m}(t)||_{L^2(\mathcal{M})}^2 \le C_2.$$

Logo

$$||u'_{m}(t)||_{L^{2}(\mathcal{M})}^{2} + ||\nabla u_{m}(t)||_{L^{2}(\mathcal{M})}^{2} + 2\int_{0}^{t} \int_{\mathcal{M}} a(x)|u'_{m}(x,s)|^{2} d\mathcal{M}ds \leq C_{1} + C_{2}$$

$$= C \qquad (2.9)$$

pois, por hipótese a(.) é uma função não-negativa pertencente a $L^{\infty}(\mathcal{M})$, assim concluímos que

$$\|u'_m(t)\|_{L^2(\mathcal{M})}^2 + \|\nabla u_m(t)\|_{L^2(\mathcal{M})}^2 \le C \tag{2.10}$$

substituindo a expressão de $u_m(t)$ em (2.10) e comparando com

$$Y_1(t) = z(t) = \begin{bmatrix} g_{1m}(t) \\ \vdots \\ g_{mm}(t) \end{bmatrix} \quad \text{e} \quad Y_2(t) = z'(t) = \begin{bmatrix} g'_{1m}(t) \\ \vdots \\ g'_{mm}(t) \end{bmatrix}$$

obtemos

$$||Y(t)|| = \left| \left| \begin{array}{c} Y_1(t) \\ Y_2(t) \end{array} \right| \le C$$

o que implica pelo teorema de prolongamento de soluções, que $Y_m(t)$ pode ser prolongado a todo intervalo [0, t], T > 0. Portanto concluimos que (2.9) é válida para todo $t \in [0, T]$ e para todo m. Então, concluimos

$$(u_m)$$
 é limitada em $L^{\infty}(0,T;V),$ (2.11)

$$(u'_m)$$
 é limitada em $L^{\infty}(0,T;L^2(\mathcal{M})).$ (2.12)

- Segunda estimativa (limitação para $(u_m'')_{m\in\mathbb{N}}$)

Afim de simplificar a notação, denotemos de agora em diante a norma em $L^2(\mathcal{M})$ por

 $||.||_2$.

como Y(t) é solução de

$$\left\{ \begin{array}{l} Y'(t) = F(t, Y(t)) \\ Y(0) = Y^0 \ , \ Y'(0) = Y^1 \end{array} \right.$$

segue que $Y(t) \in C^1([0,T])$. Além disso, sabemos que essa E.D.O é o mesmo que

$$\begin{cases} Y'(t) = MY(t) \\ Y(0) = Y^0 \end{cases}$$

logo a solução Y(t) pode ser explicitada na forma $Y(t) = Y^0 e^{Mt}$. De fato $Y'(t) = Y^0 M e^{Mt} = MY(t)$, $Y(0) = Y^0$, como $Y \in C^1([0,T])$ e $Y(t) = Y^0 e^{Mt}$, temos que $Y'(t) \in C^1([0,t])$, o que implica que Y''(t) existe e $Y''(t) \in C^0([0,T])$. Então, vem que g''_{jm} , $g'''_{jm} \in C^0([0,T])$. Portanto, concluímos que $u_m(t) \in C^3([0,T])$.

Podemos, então, derivar a equação aproximada (2.2) diretamente em relação a t e obter

$$(u_m'''(t), v) + (-\Delta u_m'(t), v) + (a(x)u_m''(t), v) = 0$$

que é o mesmo que

$$(u_m'''(t), v) + (\nabla u_m'(t), \nabla v) + (a(x)u_m''(t), v) = 0$$
(2.13)

substituindo $v=u_m''(t)$ na equação (2.13), temos

$$\frac{1}{2}\frac{d}{dt}\|u''(t)\|_2^2 + \frac{1}{2}\frac{d}{dt}\|\nabla u_m'(t)\|_2^2 + \int_{\mathcal{M}} a(x)|u_m''(t)|^2 d\mathcal{M} = 0$$

integrando de o a $t, t \in [0, T]$, obtemos

$$\frac{1}{2} \|u_m''(t)\|_2^2 + \frac{1}{2} \|\nabla u_m'(t)\|_2^2 + \int_0^t \int_{\mathcal{M}} a(x) |u_m''(x,s)|^2 d\mathcal{M} ds
= \frac{1}{2} \|u_m''(0)\|_2^2 + \frac{1}{2} \|\nabla u_m'(0)\|_2^2$$

o que implica que

$$||u_m''(t)||_2^2 + ||\nabla u_m'(t)||_2^2 + 2\int_0^t \int_{\mathcal{M}} a(x)|u_m''(x,s)|^2 d\mathcal{M}ds = ||u_m''(0)||_2^2 + ||\nabla u_m'(0)||_2^2$$
 (2.14)

Por outro lado considerando t=0 e tomando $v=u_m''(0)$ na equação aproximada (2.2), obtemos

$$||u_m''(0)||_2^2 + (-\Delta u_m(0), u_m''(0)) + (a(x)u_m'(0), u_m''(0)) = 0$$

ou ainda

$$||u_m''(0)||_2^2 = -(-\Delta u_m(0), u_m''(0)) - (a(x)u_m'(0), u_m''(0))$$

e pela desigualdade de Cauchy-Schwarz

$$||u_m''(0)||_2^2 \le ||\Delta u_m(0)||_2 ||u_m''(0)||_2 + ||a||_{\infty} ||u_m'(0)||_2 ||u_m''(0)||_2$$

Assim

$$||u_m''(0)||_2^2 \le (||\Delta u_m(0)||_2 + ||a||_{\infty} ||u_m'(0)||_2) ||u_m''(0)||_2$$

donde

$$||u_m''(0)||_2 \le ||\Delta u_m(0)||_2 + ||a||_{\infty} ||u_m'(0)||_2$$

Portanto

$$||u_m''(0)||_2 \le ||\Delta u_{0m}||_2 + ||a||_{\infty} ||u_{1m}||_2 = ||u_{0m}||_{V \cap H^2(\mathcal{M})} + ||a||_{\infty} ||u_{1m}||_2$$

Das convergências de (u_{0m}) e (u_{1m}) em (2.2), temos que existem constantes positivas C_3 e C_4 independentes de t e m, tais que $||\Delta u_{0m}||_2 \le C_3$ e $||u_{1m}|| \le C_4$ daí

$$||u_m''(0)||_2 \le C_3 + C_4 ||a||_{\infty} \tag{2.15}$$

Logo de (2.14) e (2.15), colocando $K_1 = C_3 + C_4 ||a||_{\infty}$, obtemos

$$||u_m''(t)||_2^2 + ||\nabla u_m'(t)||_2^2 + \int_0^t \int_{\mathcal{M}} a(x)|u_m''(x,s)|^2 d\mathcal{M}ds \le K_1^2 + C_5^2$$
(2.16)

o que nos dá, chamando $K_1^2 + C_5^2 = K$

$$||u_m''(t)||^2 \le K$$

Logo temos

$$||u_m''(t)||_2^2 + ||\nabla u_m'(t)||_2^2 \le K^*(K, ||a||_\infty, T)$$

o que implica que

$$||u_m''(t)||_2^2 + ||\nabla u_m'(t)||_2^2 \le K^*, \tag{2.17}$$

onde K^* , como vemos, é independente de t e m. Concluímos então que

$$(u'_m)$$
 é limitada em $L^{\infty}(0,T;V)$ (2.18)

$$(u_m'')$$
 é limitada em $L^{\infty}(0,T;L^2(\mathcal{M}))$ (2.19)

• Terceira estimativa (limitação para $(\Delta u_m)_{m\in\mathbb{N}}$)

Temos que $\Delta: D(\Delta) \subset L^2(\mathcal{M}) \longrightarrow L^2(\mathcal{M})$, então $\Delta u_m(t) \in L^2(\mathcal{M})$. Além disso, como $a(x) \in L^{\infty}(\mathcal{M})$, temos que $a(x)u'_m(t) \in L^2(\mathcal{M})$. Então definindo:

$$h_m(t) = u''_m(t) - \Delta u_m(t) + a(x)u'_m(t)$$

concluímos que $h_m(t) \in L^2(\mathcal{M})$

Consideremos o seguinte operador projeção:

$$P_m: L^2(\mathcal{M}) \longrightarrow V_m$$

$$v \longmapsto P_m v = \sum_{i=1}^m (v, w_i) w_i$$

facilmente vemos que P_m é auto-adjunto, assim obtém-se

$$(P_m h_m(t), w_j) = (h_m(t), P_m w_j) = \left(h_m(t), \sum_{i=1}^m (w_j, w_i) w_i\right) = (h_m(t), w_j)$$

mas pelo problema aproximado (2.2), temos que $(h_m(t), w_j) = 0$ para todo j = 1, 2, ..., m, então, $(P_m h_m(t), w_j) = 0$ para todo j = 1, 2, ..., m, o que implica que $(P_m h_m(t), w_j) = 0$ em V_m donde, $P_m h_m(t) \equiv 0$ em V_m . Assim

$$P_m u_m''(t) - P_m \Delta u_m(t) + P_m(a(x)u_m'(t)) = 0$$

com $u''_m(t)$ e $\Delta u_m(t)$ pertencem a V_m (pois a base $(w_j)_{j\in\mathbb{N}}$ é formada pelos autovetores de Δ), $P_m \in \mathcal{L}(L^2(\mathcal{M}))$ e $||P_m|| \leq 1$, temos que

$$u''_m(t) - \Delta u_m(t) + P_m(a(x)u'_m(t)) = 0$$

Donde

$$\|\Delta u_m(t)\|_2 \le \|u_m''(t)\|_2 + \|P_m(a(x)u_m'(t))\|_2 \le \|u_m''(t)\|_2 + \|P_m\|_2 \|a(x)u_m'(t)\|_2$$

$$\le \|u_m''(t)\|_2 + \|a\|_{\infty} \|u_m'(t)\|_2$$

segue de (2.18) e (2.19), que existe uma constante positiva K_3 , independente de t e m, $t \in [0, T]$, tal que

$$\|\Delta u_m(t)\|_{L^2(\mathcal{M})} \le K_3$$

daí obtemos que

$$(u_m)$$
 é limitada em $L^{\infty}(0,\infty;V\cap H^2(\mathcal{M}))$ (2.20)

$$(\Delta u_m)$$
 é limitada em $L^{\infty}(0,\infty;L^2(\mathcal{M}))$ (2.21)

• Passagem ao Limite

Observando que $L^1(0,T;V')$ e $L^1(0,T;(V\cap H^2(\mathcal{M}))')$ são separáveis e $[L^1(0,T;V')]'=L^\infty(0,T;V)$

 $[L^1(0,T;(V\cap H^2(\mathcal{M}))]'=L^\infty(0,T;(V\cap H^2(\mathcal{M})),$ então segue de (2.20), (2.18) e da proposição (1.46) que existe uma subsequência de $(u_m)_{m\in\mathbb{N}}$, que iremos denotar da mesma forma, tal que

$$u'_m \stackrel{\star}{\rightharpoonup} \bar{u} \quad \text{em} \quad L^{\infty}(0, T; V)$$
 (2.22)

$$u_m \stackrel{\star}{\rightharpoonup} u \quad \text{em} \quad L^{\infty}(0, T; V \cap H^2(\mathcal{M}))$$
 (2.23)

e como $V\cap H^2(\mathcal{M}) \hookrightarrow H^1(\mathcal{M}) \hookrightarrow L^2(\mathcal{M})$, temos de (2.70) que

$$u_m \stackrel{\star}{\rightharpoonup} u \text{ em } L^{\infty}(0,T;L^2(\mathcal{M}))$$

como (0,T) é limitado, temos que

$$L^{\infty}(0,T;L^2(\mathcal{M})) \hookrightarrow L^2(0,T;L^2(\mathcal{M})).$$

Agora como $L^2(0,T;L^2(\mathcal{M})) \equiv L^2(Q)$ é reflexivo, obtemos conforme o lema 1.45, que, existe uma subsequência, a qual ainda denotaremos por (u_m) de $(u_m)_{m\in\mathbb{N}}$, tal que

$$u_m \rightharpoonup u \text{ em } L^2(Q), \quad \text{ onde } Q = [0, T] \times \mathcal{M}$$

identificando $L^2(Q)$ com seu dual, temos

$$\langle f, u_m \rangle_{D'(Q), D(Q)} \longrightarrow \langle f, u \rangle_{D'(Q), D(Q)}, \forall f \in (L^2(Q))'$$

ou seja,

$$u_m \longrightarrow u \text{ em } D'(Q)$$

Sendo a derivação uma operação contínua em D'(Q), segue que

$$u'_m \longrightarrow u' \text{ em } D'(Q)$$

Logo, pela unicidade do limite em D'(Q), temos

$$\bar{u} = u' \text{ em } L^2(\mathcal{M})$$

Portanto,

$$u_m' \stackrel{\star}{\rightharpoonup} u \text{ em } L^{\infty}(0, T; V)$$
 (2.24)

Agora de (2.19), existe $\bar{x} \in L^{\infty}(0, T; L^{2}(\mathcal{M}))$ e uma subsequência de (u''_{m}) , ainda denotando da mesma forma, tal que

$$u_m'' \stackrel{\star}{\rightharpoonup} \bar{x} \text{ em } L^{\infty}(0,T;L^2(\mathcal{M}))$$

Da mesma forma, concluímos que $\bar{x} = u''$ e portanto que

$$u_m'' \stackrel{\star}{\rightharpoonup} u'' \text{ em } L^{\infty}(0, T; L^2(\mathcal{M}))$$
 (2.25)

Por último como

$$u_m \longrightarrow u \text{ em } D'(Q)$$

temos

$$\Delta u_m \longrightarrow \Delta u \text{ em } D'(Q)$$

como $L^{\infty}(0,T;L^2(\mathcal{M})) \equiv [L^1(0,T;(L^2(\mathcal{M}))')]'$ e $L^1(0,T;L^2(\mathcal{M}))$ é separável, obtemos de (2.21), que existe uma subsequência de (Δu_m), ainda denotada da mesma forma, e $y \in L^{\infty}(0,T;L^2(\mathcal{M}))$, tal que

$$\Delta u_m \stackrel{\star}{\rightharpoonup} y \text{ em } L^{\infty}(0,T;L^2(\mathcal{M}))$$

concluímos de maneira análoga ao que fizemos antes, que $y = \Delta u$ e

$$\Delta u_m \stackrel{\star}{\rightharpoonup} \Delta u \text{ em } L^{\infty}(0, T; L^2(\mathcal{M}))$$
 (2.26)

agora como $L^{\infty}(0,T;V) \hookrightarrow L^{2}(0,T;L^{2}(\mathcal{M}))$, vem de (2.71), que

$$u'_m \rightharpoonup u' \text{ em } L^2(0,T;L^2(\mathcal{M}))$$

Logo

$$\int_0^T (f(t),u_m'(t))dt \longrightarrow \int_0^T (f(t),u'(t))dt, \quad \forall f \in L^2(0,T;L^2(\mathcal{M})).$$

Em particular, se f = a(x)w, com $a \in L^{\infty}(\mathcal{M})$ e $w \in L^{2}(0,T;L^{2}(\mathcal{M}))$ temos que

$$\int_0^T (a(x)w,u_m'(t))dt \longrightarrow \int_0^T (a(x)w,u'(t))dt, \quad \forall f \in L^2(0,T;L^2(\mathcal{M}))$$

o que implica

$$\int_0^T a(x)wu_m'(t)d\mathcal{M}dt \longrightarrow \int_0^T a(x)wu'(t)d\mathcal{M}dt, \quad \forall f \in L^2(0,T;L^2(\mathcal{M}))$$

donde

$$\int_0^T (a(x)u'_m(t), w)dt \longrightarrow \int_0^T (a(x)u'(t), w)dt, \quad \forall f \in L^2(0, T; L^2(\mathcal{M}))$$
 (2.27)

Sejam $\theta(t) \in L^2(0,T)$ e $v \in L^2(\mathcal{M})$. Então, $w = v\theta(t) \in L^2(0,T;L^2(\mathcal{M}))$. Logo de (2.27) temos que

$$\int_0^T (a(x)u'_m(t), v)\theta(t)dt \longrightarrow \int_0^T (a(x)u'(t), v)\theta(t)dt, \quad \forall f \in L^2(0, T; L^2(\mathcal{M})) \quad (2.28)$$

$$\forall \theta \in L^2(0, T)$$

Analogamente (2.25) nos dá

$$\int_0^T (u_m''(t), v)\theta(t)dt \longrightarrow \int_0^T (u''(t), v)\theta(t)dt, \quad \forall f \in L^2(0, T; L^2(\mathcal{M}))$$

$$\forall \theta \in L^2(0, T)$$
(2.29)

e de (2.26) obtemos

$$\int_{0}^{T} (-\Delta u_{m}(t), v)\theta(t)dt \longrightarrow \int_{0}^{T} (-\Delta u(t), v)\theta(t)dt, \quad \forall f \in L^{2}(0, T; L^{2}(\mathcal{M})) \qquad (2.30)$$

Multiplicando a equação aproximada de (2.2) por $\theta \in L^2(0,T)$ e integrando de 0 a T, obtemos

$$\int_{0}^{T} (u_{m}'', v)\theta(t)dt + \int_{0}^{T} (-\Delta u_{m}, v)\theta(t)dt + \int_{0}^{T} (a(x)u_{m}', v)\theta(t)dt = 0$$
 (2.31)

 $\forall v \in V_{m_0}$ e $\theta \in L^2(0,T)$, onde $m_0 < m$ é fixo e arbitrário. Tomando o limite em (2.31), mantendo m_0 fixo, porém arbitrário e utilizando (2.28), (2.29) e (2.30), obtemos

$$\int_0^T (u'',v)\theta(t)dt + \int_0^T (-\Delta u,v)\theta(t)dt + \int_0^T (a(x)u',v)\theta(t)dt = 0$$

 $\forall v \in V_{m_0} \in \theta \in L^2(0,T)$

como $[w_1, w_2, \cdots]$ é denso em $L^2(\mathcal{M})$ e (2.2) é válido para todo $v \in V_{m_0}$ com $m_0 < \infty$ arbitrário, segue que (2.2) é válido para todo $v \in L^2(\mathcal{M})$. Além disso, o conjunto

$$R = \{ v\theta : \theta \in L^2(0,T), v \in L^2(\mathcal{M}) \}$$

é total em $L^2(Q)$. Logo

$$\int_0^T (u'',v)\theta(t)dt + \int_0^T (-\Delta u,v)\theta(t)dt + \int_0^T (a(x)u',v)\theta(t)dt = 0 \quad \text{ em } L^2(Q)$$

Portanto

$$(u_m'' - \Delta u + a(x)u', v) = 0 , \forall v \in L^2(Q)$$

donde concluímos que

$$u''_m - \Delta u + a(x)u' = 0$$
 quase sempre em $Q = \mathcal{M} \times [0, T]$

o que mostra existe $u \in L^{\infty}(0,T;V \cap H^2(\mathcal{M}))$, solução regular do problema (2.1), e pelo lema (1.54) tal solução está na classe $u \in C(\mathbb{R}_+;V) \cap C^1(\mathbb{R}_+;L^2(\mathcal{M}))$

2.1.2 Dados Iniciais

Note que faz sentido calcularmos u(0), u'(0) e u'(T). De fato, sendo $u \in L^{\infty}(0, T; V)$, $u', u'' \in L^{\infty}(0, T; L^{2}(\mathcal{M}))$ e [0, T] limitado, temos que

$$u \in L^1(0, T; V) \text{ e } u', u'' \in L^1(0, T; L^2(\mathcal{M}))$$

Além disso como V tem imersão contínua em $L^2(\mathcal{M})$, temos pelo lema (1.54), que $u, u' \in C([0,T];L^2(\mathcal{M}))$

• $Verifiquemos\ que\ u(0) = u^0 e u'(0) = u^1$

De fato, como

$$u_m \stackrel{\star}{\rightharpoonup} u \text{ em } L^{\infty}(0,T;V) \text{ e } L^{\infty}(0,T;V) \hookrightarrow L^{\infty}(0,T;L^2(\mathcal{M}))$$

temos $u_m \stackrel{\star}{\rightharpoonup} u \text{ em } L^{\infty}(0,T;L^2(\mathcal{M}))$

donde, identificando $L^2(\mathcal{M})$ com seu dual, obtemos

$$\int_0^T (u_m(t), w(t))dt \longrightarrow \int_0^T (u(t), w(t))dt , \quad \forall w \in L^1(0, T; L^2(\mathcal{M}))$$
 (2.32)

Analogamente, temos

$$\int_0^T (u'_m(t), w(t))dt \longrightarrow \int_0^T (u'(t), w(t))dt , \quad \forall w \in L^1(0, T; L^2(\mathcal{M}))$$
 (2.33)

Seja $\theta \in C^1([0,T])$ com $\theta(0) = 1$ e $\theta(T) = 0$ e seja $v \in L^2(\mathcal{M})$. Então, $\theta, \theta' \in C([0,T])$, o que implica $\theta, \theta' \in L^2(0,T)$, donde $\bar{w}(t) = v\theta'(t) \in L^1(0,T;L^2(\mathcal{M}))$ e $w(t) = v\theta(t) \in L^1(0,T;L^2(\mathcal{M}))$, substituindo w em (2.33) e \bar{w} em (2.32), obtemos

$$\int_0^T (u_m(t), v)\theta'(t)dt \longrightarrow \int_0^T (u(t), v)\theta'(t)dt$$

е

$$\int_0^T (u_m'(t), v)\theta(t)dt \longrightarrow \int_0^T (u'(t), v)\theta(t)dt$$

somando as duas expressões à esquerda, obtemos

$$\int_0^T \frac{d}{dt} \{ (u_m(t), v)\theta(t) \} dt \longrightarrow \int_0^T \frac{d}{dt} \{ (u, v)\theta(t) \} dt$$
 (2.34)

Notemos que, como $u \in C([0,T]; L^2(\mathcal{M}))$ e $v \in L^2(\mathcal{M})$, temos que $(u(t),v) \in C([0,T])$ e como $\theta(t) \in C([0,T])$, temos também que $(u(t),v)\theta(t) \in C([0,T])$.

Além disso

$$\frac{d}{dt}\{(u(t),v)\theta(t)\} = (u'(t),v)\theta(t) + (u(t),v)\theta'(t) \in L^1(0,T)$$

Logo, pelo Teorema Fundamental do Cálculo Generalizado

$$\int_{0}^{T} \frac{d}{dt} \{ (u(t), v)\theta(t) \} dt = (u(T), v)\theta(T) - (u(0), v)\theta(0)$$
 (2.35)

Analogamente

$$\int_{0}^{T} \frac{d}{dt} \{ (u_m(t), v)\theta(t) \} dt = (u_m(T), v)\theta(T) - (u_m(0), v)\theta(0)$$
 (2.36)

segue de (2.34), utilizando (2.35) e (2.36), que

$$(u_m(T), v)\theta(T) - (u_m(0), v)\theta(0) \longrightarrow (u(T), v)\theta(T) - (u(0), v)\theta(0)$$

mas como $\theta(0) = 1$ e $\theta(T) = 0$, consequentemente

$$(u_m(0), v) \longrightarrow (u(0), v) \quad \forall v \in L^2(\mathcal{M})$$

donde

$$u_{0m} \rightharpoonup u(0) \quad \text{em } L^2(\mathcal{M})$$

Por outro lado, do problema aproximado (2.2), sabemos que

$$u_{0m} \longrightarrow u^0$$
 forte em V

o que implica

$$u_{0m} \longrightarrow u^0$$
 forte em $L^2(\mathcal{M})$

donde

$$u_{0m} \rightharpoonup u^0 \quad \text{em } L^2(\mathcal{M})$$

Segue da unicidade do limite fraco que $u(0) = u^0$ em $L^2(\mathcal{M})$. De maneira análoga, considerando (2.29) e (2.33), prova-se que $u'(0) = u^1$.

2.1.3 Unicidade da Solução Regular

Sejam u e v soluções do problema (2.1). Se tomarmos w = u - v, então $w \in C(\mathbb{R}_+; V) \cap C^1(\mathbb{R}_+; L^2(\mathcal{M}))$, e satisfaz o seguinte problema:

$$\begin{cases} w'' - \Delta w + aw' = 0 & \text{quase sempre em } \mathcal{M} \times (0, \infty) \\ w(0) = 0 = w'(0) \end{cases}$$
 (2.37)

Multiplicando a equação da primeira linha de (2.37) por w'(t) e integrando em \mathcal{M} , obtemos

$$\int_{\mathcal{M}} w''(t)d\mathcal{M} - \int_{\mathcal{M}} \Delta w(t)w'(t)d\mathcal{M} + \int_{\mathcal{M}} a(x)(w'(t))^2 d\mathcal{M} = 0$$

Assim

$$(w''(t), w(t)) + (\nabla w(t), \nabla w'(t)) + \int_{\mathcal{M}} a(x)(w'(t))^2 d\mathcal{M} = 0$$

Donde

$$\frac{1}{2}\frac{d}{dt}\{\|w'(t)\|_{2}^{2}+\|\nabla w(t)\|_{2}^{2}\} = -\int_{\mathcal{M}} a(x)(w'(t))^{2}d\mathcal{M}$$

integrando de 0 a t, com $t \in [0, \infty)$, temos que

$$\|w'(t)\|_{2}^{2} + \|\nabla w(t)\|_{2}^{2} - \|w'(0)\|_{2}^{2} - \|\nabla w(0)\|_{2}^{2} = -2\int_{0}^{t} \int_{\mathcal{M}} a(x)(w'(x,s))^{2} d\mathcal{M}ds \le 0$$

pois $a \in L^{\infty}(\mathcal{M})$ é não negativa, e da segunda linha de (2.37), temos

$$||w'(t)||_2^2 + ||\nabla w(t)||_2^2 \le 0$$
 , $\forall t \in [0, \infty)$

o que implica $\|\nabla w(t)\|_2 = 0$, $\forall t \in [0, \infty)$, daí $\|w(t)\|_2 = 0$, o que prova a unicidade.

2.2 Soluções Fracas

2.2.1 Existência de Solução

Provaremos a existência de solução fraca por aproximações de soluções regulares. De fato, seja $\{u^0,u^1\}\in V\times L^2(\mathcal{M})$. Como $V\cap H^2(\mathcal{M})$ é denso em V e V é denso em $L^2(\mathcal{M})$, existe $\{u^0_\mu,u^1_\mu\}\in V\cap H^2(\mathcal{M})\times V$, tal que

$$\{u^0_\mu, u^1_\mu\} \longrightarrow \{u^0, u^1\} \quad \text{em } V \times L^2(\mathcal{M})$$
 (2.38)

Desta forma, temos para cada $\mu \in \mathbb{N}$ que existe uma única solução regular u_{μ} do seguinte problema

$$\begin{cases} u''_{\mu} - \Delta u_{\mu} + a u_{\mu} = 0 \\ u_{\mu}(0) = u^{0}, \ u'_{\mu}(0) = u^{1}. \end{cases}$$
 (2.39)

Por um lado, pelos argumentos utilizados na unicidade obtemos

$$||u'_{\mu} - u'_{\sigma}||_{2}^{2} + ||\nabla(u_{\mu} - u_{\sigma})||_{2}^{2} \le ||u'_{\mu}(0) - u'_{\sigma}(0)||_{2}^{2} + ||\nabla(u_{\mu}(0) - u_{\sigma}(0))||_{2}^{2}$$

Por outro lado, pelo fato das sequências (u_{ν}^0) e (u_{ν}^1) serem convergentes em V e $L^2(\mathcal{M})$, respectivamente, concluímos que

$$(u_{\mu})$$
 é uma sequência de Cauchy em $C(\mathbb{R}_{+}; V)$ (2.40)

$$(u'_{\mu})$$
 é uma sequência de Cauchy em $C(\mathbb{R}_+; L^2(\mathcal{M}))$ (2.41)

sendo $C(\mathbb{R}_+; V)$ e $C(\mathbb{R}_+; L^2(\mathcal{M}))$ completos, existem $u \in C(\mathbb{R}_+; V)$ e $u' \in C(\mathbb{R}_+; L^2(\mathcal{M}))$ respectivamente, tais que

$$u_{\mu} \longrightarrow u \text{ em } C(\mathbb{R}_{+}; V)$$
 (2.42)

$$u'_{\mu} \longrightarrow u' \quad \text{em} \quad C(\mathbb{R}_+; L^2(\mathcal{M}))$$
 (2.43)

em consequência disto, temos para o intervalo [0,T] com T>0 de (2.43)

$$u'_{\mu} \longrightarrow u' \quad \text{em} \quad L^2([0,T]; L^2(\mathcal{M}))$$
 (2.44)

donde

$$u'_{\mu} \rightharpoonup u' \quad \text{em} \quad L^2([0,T]; L^2(\mathcal{M}))$$
 (2.45)

Agora, considere $\theta \in \mathcal{D}(0,T)$ e $\varphi \in \mathcal{D}(\mathcal{M})$. Compondo (2.39) com $\theta \varphi$ obtemos

$$\langle u''_{\mu} - \Delta u_{\mu} + a u'_{\mu}, \theta \varphi \rangle = 0 \quad , \forall \theta \in \mathcal{D}(0, T), \quad \forall \varphi \in \mathcal{D}(\mathcal{M})$$
 (2.46)

notemos de (2.46) que

$$\langle u''_{\mu}, \theta \varphi \rangle = -\langle u'_{\mu}, \theta' \varphi \rangle$$

e de (2.41), obtemos

$$-\langle u_{\mu}',\theta'\varphi\rangle \longrightarrow -\langle u',\theta'\varphi\rangle = \langle u'',\theta\varphi\rangle$$

concluímos então que

$$\langle u''_{\mu}, \theta \varphi \rangle \longrightarrow \langle u'', \theta \varphi \rangle \quad , \forall \theta \in \mathcal{D}(0, T), \quad \forall \varphi \in \mathcal{D}(\mathcal{M})$$
 (2.47)

Por outro lado, como para cada $\mu \in \mathbb{N}$, u_{μ} é solução regular do problema (2.39), temos para, que

$$\langle -\Delta u_{\mu}, \theta \varphi \rangle = \langle \nabla u_{\mu}, \theta \nabla \varphi \rangle$$

e por (2.41) resulta

$$\langle \nabla u_{\mu}, \theta \nabla \varphi \rangle \longrightarrow \langle \nabla u, \theta \nabla \varphi \rangle = \langle -\Delta u, \theta \varphi \rangle$$

isto é,

$$\langle -\Delta u_{\mu}, \theta \varphi \rangle \longrightarrow \langle -\Delta u, \theta \varphi \rangle \quad , \forall \theta \in \mathcal{D}(0, T), \quad \forall \varphi \in \mathcal{D}(\mathcal{M})$$
 (2.48)

De (2.45), (2.47) e (2.48), obtemos de (2.46), após a passagem ao limite

$$\langle u'' - \Delta u + au', \theta \varphi \rangle = 0 \quad , \forall \theta \in \mathcal{D}(0, T), \quad \forall \varphi \in \mathcal{D}(\mathcal{M})$$
 (2.49)

lembrando que as dualidades acima são em $\mathcal{D}'(\mathcal{M} \times (0,T)) \times \mathcal{D}(\mathcal{M} \times (0,T))$. Mas pela totalidade do espaço

$$R = \{\theta \varphi : \theta \in \mathcal{D}(0,T) \in \varphi \in \mathcal{D}(\mathcal{M})\}\$$

em $\mathcal{D}(\mathcal{M} \times (0,T))$, vem de (2.49) que

$$\langle u'' - \Delta u + au', \psi \rangle_{\mathcal{D}'(\mathcal{M} \times (0,T)) \times \mathcal{D}(\mathcal{M} \times (0,T))} = 0$$

Então

$$u'' - \Delta u + a(x)u' = 0$$
 em $\mathcal{D}'(\mathcal{M} \times (0, T))$

como $au' \in L^{\infty}(0,T;L^2(\mathcal{M}))$ e $\Delta \in \mathcal{L}(V,[H^1(\mathcal{M})]') = \mathcal{L}(V,H^{-1}(\mathcal{M}))$, concluímos que $u'' \in L^{\infty}(0,T;H^{-1}(\mathcal{M}))$ e consequentemente

$$u'' - \Delta u + a(x)u' = 0$$
 em $L^{\infty}(0, T; H^{-1}(\mathcal{M}))$

além disso de (2.40) e (2.41), temos $u \in C(0,T;V) \cap C^1(0,T;L^2(\mathcal{M}))$ provando a existência da solução fraca.

Provaremos agora que a solução fraca obtida por aproximações de soluções regulares satisfaz a identidade da energia. Com efeito, das convergências dadas em (2.40), (2.41) e (2.45), obtemos

$$||u'_{\mu}(t)||_{2}^{2} + ||\nabla u_{\mu}(t)||_{2}^{2} + 2\int_{0}^{t} (au'_{\mu}(s), u'_{\mu}(s))ds = ||u'_{\mu}(0)||_{2}^{2} + ||\nabla u_{\mu}(0)||_{2}^{2}$$

após passagem ao limite, temos

$$||u'(t)||_{2}^{2} + ||\nabla u(t)||_{2}^{2} + 2\int_{0}^{t} (au'(s), u'(s))ds = ||u^{1}||_{2}^{2} + ||\nabla u^{0}||_{2}^{2}$$
(2.50)

Observação 2.1. Note que a identidade de energia dada em (2.50) somente é válida para soluções fracas que são limites de soluções regulares, no entanto no apêndice deste capítulo, tal identidade é provada no caso geral, ou seja, para qualquer solução fraca da equação da onda linear.

2.2.2 Unicidade da Solução Fraca

Sejam u_1 e u_2 duas soluções fracas de (2.1). Denotando $w=u_1-u_2$, obtemos que w satisfaz o seguinte problema

$$\begin{cases} w'' - \Delta w + au_1' - au_2' = 0 \\ w(0) = 0 = w'(0) \end{cases}$$
 (2.51)

como w satisfaz a identidade da energia e w(0) = w'(0) = 0, temos

$$||w'(t)||_{2}^{2} + ||\nabla w(t)||_{2}^{2} = -2 \int_{0}^{T} (a(u'_{1}(s) - u'_{2}(s)), u'_{1}(s) - u'_{2}(s)) ds$$
$$= -2 \int_{0}^{t} \int_{\mathcal{M}} a(x)(u'_{1}(x,s) - u'_{2}(x,s))^{2} d\mathcal{M} ds \le 0$$

donde, $\|\nabla w(t)\|_2 = 0$, o que implica w(t) = 0 em $H^1(\mathcal{M})$ para todo t, provando assim o desejado.

2.3 Existência e Unicidade Para o Problema Não Linear

Estudaremos agora a existência e unicidade de solução da equação da onda sobre uma superfície compacta, com dissipação localmente distribuída e não-linear. Apresentado no que segue

$$\begin{cases} u_{tt} - \Delta u + a(x)g(u_t) = 0 & \text{em} \quad \mathcal{M} \times (0, \infty) \\ u(0) = u^0 \quad , \quad u_t(0) = u^1 & \text{em} \quad \mathcal{M} \end{cases}$$
 (2.52)

onde \mathcal{M} é uma superfície compacta, mergulhada, orientada e sem fronteira em \mathbb{R}^3 .

A energia associada ao problema acima vem dada pela seguinte expressão

$$E(t) = \frac{1}{2} \int_{\mathcal{M}} (|u_t(x,t)|^2 + |\nabla u(x,t)|^2) d\mathcal{M}$$
 (2.53)

A a função g satisfaz as seguintes propriedades:

Hipótese.2.1 g é uma função real, tal que

- $i)\ g(s)$ é contínua monótona crescente e diferenciável por partes.
- $ii) g(s)s > 0 para s \neq 0$
- $iii) |k|s| \le g(s) \le K|s| \text{ se } |s| \ge 1$
- $|iv)|g'(s)| \le M \text{ se } |s| \ge 1.$

onde M é uma constante positiva, suponhamos também, como antes, que $a \in L^{\infty}(\mathcal{M})$ é uma função não-negativa, tal que $a(x) \geq a_0 > 0$ apenas num subconjunto aberto \mathcal{M}_* de \mathcal{M} o qual contém $\mathcal{M} \setminus \bigcup_{i=1}^k \mathcal{M}_{0i}$. Onde para cada $i = 1, \ldots, k, \mathcal{M}_{0i} \subset \mathcal{M}_0$ são subconjuntos abertos com fronteira $\partial \mathcal{M}_{0i}$ (regular), tais que \mathcal{M}_{0i} são regiões umbílicas e a curvatura média H nessas regiões é não-positiva ($H \leq 0$).

Nosso intuito, é provarmos a existência e unicidade de soluções u para o problema (2.52). Os resultados obtidos estão enunciados no seguinte teorema.

Teorema 2.2. Seja uma superfície compacta, orientada, mergulhada sem fronteira em \mathbb{R}^3 de classe C^3 . Satisfeitas as condições acima, temos

1. O problema (2.52) é bem posto no espaço $V \times L^2(\mathcal{M})$, i.e, para os dados iniciais $\{u^0, u^1\} \in V \times L^2(\mathcal{M})$, existe uma solução fraca única de (2.52) na classe

$$u \in C(\mathbb{R}_+; V) \cap C^1(\mathbb{R}_+; L^2(\mathcal{M}))$$
(2.54)

2. Mais além, o termo da velocidade da solução tem a seguinte regularidade

$$u_t \in L^2_{loc}(\mathbb{R}_+; L^2(\mathcal{M}))$$

(consequentemente, $g(u_t) \in L^2_{loc}(\mathbb{R}_+; L^2(\mathcal{M}))$ pela Hip.2.1)

Além disso, se $\{u^0, u^1\} \in V \cap H^2(\mathcal{M}) \times L^2(\mathcal{M})$ então a solução tem a seguinte regula-

ridade

$$u \in L^{\infty}(\mathbb{R}_+; V \cap H^2(\mathcal{M})) \cap W^{1,\infty}(\mathbb{R}_+; V) \cap W^{2,\infty}(\mathbb{R}_+; L^2(\mathcal{M})). \tag{2.55}$$

Admitindo que u é a solução global e única do problema (2.52), nós definimos a energia, correspondente ao funcional dado por

$$E(t) = \frac{1}{2} \int_{\mathcal{M}} \left[|u_t(x,t)|^2 + |\nabla_T u(x,t)|^2 \right] d\mathcal{M}$$
 (2.56)

Para cada solução de (2.52) na classe (2.54) a seguinte identidade é válida.

$$E(t_2) - E(t_1) = -\int_{t_1}^{t_2} \int_{\mathcal{M}} a(x)g(u_t)u_t d\mathcal{M}dt , \forall t_2 > t_1 \ge 0$$
 (2.57)

e consequentemente a energia é uma função não-crescente da variável de tempo t.

Demonstração: Para provarmos a existência de solução, utilizaremos o método de Faedo-Galerkin juntamente com o Teorema Espectral, na intenção de obter o problema projetado em um espaço de dimensão m, para cada $m \in \mathbb{N}$. Mais adiante, utilizando uma mudança de variáveis obteremos um sistemas de equações diferenciais ordinárias, cuja existência de solução local, será assegurada pelo Teorema de Carathéodory, para cada $m \in \mathbb{N}$. Na sequência, serão apresentadas as estimativas à priori, que servirão para estender a solução a um intervalo (0,T), onde T>0 não dependerá de m.

2.3.1 Problema Aproximado

Conforme a seção 1.6, para cada $m \in \mathbb{N}$, denotemos por

$$V_m = [w_1, w_2, \dots, w_m]$$

o espaço gerado pelas m primeiras autofunções do sistema $(w_j)_{j\in\mathbb{N}}$

Definamos
$$u_m(t) \in V_m \Leftrightarrow u_m(t) = \sum_{j=1}^m g_{jm}(t)w_j$$

O problema aproximado consiste em determinar $u_m(t)=\sum_{j=1}^m g_{jm}(t)w_j\in V_m,$ tal que, satisfaça

$$\begin{cases} (u''_{m}(t), v) + (-\Delta u_{m}(t), v) + (a(x)g(u'_{m}(t)), v) = 0 & para \ todo \ v \in V_{m} \\ u_{m}(0) = u_{0m} \to u^{0} & em \ V \cap H^{2}(\mathcal{M}) \\ u'_{m}(0) = u_{1m} \to u^{1} & em \ V \end{cases}$$
(2.58)

ou ainda

$$\begin{cases} (u''_{m}(t), v) + (\nabla u_{m}(t), \nabla v) + (a(x)g(u'_{m}(t)), v) = 0 & para \ todo \ v \in V_{m} \\ u_{m}(0) = u_{0m} \to u^{0} & em \ V \cap H^{2}(\mathcal{M}) \\ u'_{m}(0) = u_{1m} \to u^{1} & em \ V \end{cases}$$
(2.59)

Consideremos em (2.59), $v = w_r$, $j = 1, 2, \ldots, m$. Então,

$$(u''_m(t), w_r) + (\nabla u_m(t), \nabla w_r) + (a(x)g(u'_m(t)), w_r) = 0$$

Substituindo a expressão de $u_m(t)$, obtemos

$$g_{jm}''(t) + \sum_{j=1}^{m} g_{jm}(t)(\nabla w_j, \nabla w_r) + (a(x)g(u_m'(t)), w_r) = 0$$

Logo

$$\begin{bmatrix} g_{1m}''(t) \\ g_{2m}''(t) \\ \vdots \\ g_{mm}''(t) \end{bmatrix} + \begin{bmatrix} (\nabla w_1, \nabla w_1) & (\nabla w_2, \nabla w_1) & \cdots & (\nabla w_m, \nabla w_1) \\ (\nabla w_1, \nabla w_2) & (\nabla w_2, \nabla w_2) & \cdots & (\nabla w_m, \nabla w_2) \\ \vdots & \vdots & \ddots & \vdots \\ (\nabla w_1, \nabla w_m) & (\nabla w_2, \nabla w_m) & \cdots & (\nabla w_m, \nabla w_m) \end{bmatrix} \cdot \begin{bmatrix} g_{1m}(t) \\ g_{2m}(t) \\ \vdots \\ g_{mm}(t) \end{bmatrix}$$

$$+ \begin{bmatrix} \int_{\mathcal{M}} a(x)g(u'_m)w_1 \\ \int_{\mathcal{M}} a(x)g(u'_m)w_2 \\ \vdots \\ \int_{\mathcal{M}} a(x)g(u'_m)w_m \end{bmatrix} = 0$$

Por outro lado, como $(w_j)_{j\in\mathbb{N}}$ e $\left(\frac{w_j}{\sqrt{\lambda_j}}\right)_{j\in\mathbb{N}}$ são sistemas ortonormais completos em $L^2(\mathcal{M})$ e V, respectivamente, obtemos

$$\begin{bmatrix} (\nabla w_1, \nabla w_1) & (\nabla w_2, \nabla w_1) & \cdots & (\nabla w_m, \nabla w_1) \\ (\nabla w_1, \nabla w_2) & (\nabla w_2, \nabla w_2) & \cdots & (\nabla w_m, \nabla w_2) \\ \vdots & \vdots & \ddots & \vdots \\ (\nabla w_1, \nabla w_m) & (\nabla w_2, \nabla w_m) & \cdots & (\nabla w_m, \nabla w_m) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_m \end{bmatrix} = A$$

colocando $B = [w_1 \quad w_2 \quad \dots \quad w_m]$, matriz linha, e denotando

$$z(t) = \begin{bmatrix} g_{1m}(t) \\ g_{2m}(t) \\ \vdots \\ g_{mm}(t) \end{bmatrix}$$

Obtemos o seguinte sistema de equações diferenciais diferenciais ordinárias

$$\begin{cases} z''(t) + Az(t) + H(z'(t)) = 0 \\ z(0) = z^0 , z'(0) = z^1 \end{cases}$$

onde

$$H(z'(t)) = \begin{bmatrix} \int_{\mathcal{M}} a(x)g(B.z'(t))w_1 d\mathcal{M} \\ \int_{\mathcal{M}} a(x)g(B.z'(t)w_2 d\mathcal{M} \\ \vdots \\ \int_{\mathcal{M}} a(x)g(B.z'(t)w_m d\mathcal{M} \end{bmatrix}$$

Definamos:

$$Y_1(t) = z(t)$$

$$Y_2(t) = z'(t)$$

$$Y(t) = \left[\begin{array}{c} Y_1(t) \\ Y_2(t) \end{array} \right]$$

Logo temos

$$Y'(t) = \begin{bmatrix} Y_1'(t) \\ Y_2'(t) \end{bmatrix} = \begin{bmatrix} z'(t) \\ z''(t) \end{bmatrix} = \begin{bmatrix} Y_2(t) \\ -H(z'(t)) - Az(t) \end{bmatrix}$$
$$= \begin{bmatrix} Y_2(t) \\ -H(Y_2(t)) - AY_1(t) \end{bmatrix} = \begin{bmatrix} 0 \\ -H(Y_2(t)) \end{bmatrix} + \begin{bmatrix} 0 & I \\ -A & 0 \end{bmatrix} \begin{bmatrix} Y_1(t) \\ Y_2(t) \end{bmatrix}$$

Denotando

$$\left[\begin{array}{cc} 0 & I \\ -A & 0 \end{array}\right] = M$$

Obtemos da expressão acima, o seguinte problema de valor inicial

$$\begin{cases} Y'(t) = \begin{bmatrix} 0 \\ -H(Y_2(t)) \end{bmatrix} + M \begin{bmatrix} Y_1(t) \\ Y_2(t) \end{bmatrix} \\ Y(0) = Y^0 \end{cases}$$

Provaremos que o problema acima possui solução local, utilizando o Teorema de Carathéodory.

Com efeito, consideremos a aplicação:

$$F: [0,T] \times \mathbb{R}^{2m} \longrightarrow \mathbb{R}^{2m}$$

$$(t,y) \longmapsto F(t,y) = \begin{bmatrix} 0 \\ -H(y_2(t)) \end{bmatrix} + My$$

onde
$$y = Y = (g_1, \dots, g_m, g'_1, \dots, g'_m), y_1 = (g_1, \dots, g_m) \in y_2 = (g'_1, \dots, g'_m)$$

Verifiquemos que a função F está nas condições de Carathéodory. De fato

- (i) Seja $y \in \mathbb{R}^{2m}$ fixado. A função F é contínua como função de $t \in [0, T]$, uma vez que esta não depende de t.
- (ii) Para quase todo $t \in [0, T]$, F é contínua como função de y.

De fato, de início notemos que a aplicação

$$y \longmapsto My$$

é linear, consequentemente contínua.

Por outro lado, seja $(y_{2\nu})_{\nu\in\mathbb{N}}\subset\mathbb{R}^m$ uma sequência, tal que

$$y_{2\nu} \longrightarrow y_2 \quad \text{em} \quad \mathbb{R}^m$$

Pela continuidade de g e do fato de

$$By_{2\nu} \longrightarrow By_2$$

segue que, para cada $x \in \mathcal{M}$, temos

$$g(By_{2\nu}) \longrightarrow g(By_2)$$
 em \mathbb{R}

portanto

$$g(By_{2\nu})w_j \longrightarrow g(By_2)w_j$$
 em \mathbb{R} $\forall j = 1, \dots, m$.

Devemos provar que

$$\int_{\mathcal{M}} a(x)g(By_{2\nu})w_j d\mathcal{M} \longrightarrow \int_{\mathcal{M}} a(x)g(By_2)w_j d\mathcal{M}$$
 (2.60)

Com efeito, para $|By_{2\nu}| \geq 1$ temos, pelo fato da sequência $(By_{2\nu})_{\nu \in \mathbb{N}}$ ser limitada e $a \in L^{\infty}(\mathcal{M})$, vêm que

$$|a(x)g(By_{2\nu})w_{j}| \leq ||a||_{\infty}K|By_{2\nu}||w_{j}|$$

$$\leq ||a||_{\infty}KM|w_{j}(x)| = ||a||_{\infty}M_{1}|w_{j}(x)|$$
(2.61)

onde $M_1 = KM$.

Agora, para $|By_{2\nu}| \le 1$ segue da compacidade de $\mathcal M$ e da continuidade de g, que existe uma constante $M_2>0$ satisfazendo

$$|g(By_{2\nu})w_i| \le M_2|w_i(x)|$$

daí

$$|a(x)g(By_{2\nu}w_j)| \le ||a||_{\infty}M_2|w_j(x)| \tag{2.62}$$

Então em qualquer caso, para cada $j=1,\ldots,m$, vêm de (2.61) e (2.62), que existe $M_3=\max\{\|a\|_\infty M_1,\|a\|_\infty M_2\}$ tal que

$$|a(x)g(By_{2\nu})| \le M_3|w_i(x)| \tag{2.63}$$

Logo pelo Teorema da Convergência Dominada de Lebesgue, temos

$$\int_{\mathcal{M}} a(x)g(By_{2\nu})w_j d\mathcal{M} \longrightarrow \int_{\mathcal{M}} a(x)g(By_2)w_j d\mathcal{M}$$

o que prova (2.60), ou seja $H(y_{2\nu}) \longrightarrow H(y_2)$, assim dado $\varepsilon > 0$, existe $\delta > 0$, tal que $|y^1 - y^2| < \delta$ temos $|F(t, y^1) - F(t, y^2)| < \varepsilon$

o que prova a continuidade de F em função de y.

(iii) Seja $\mathbf{K} \subset [0,T] \times \mathbb{R}^{2m}$ um subconjunto compacto, então

$$||F(t,y)||_{\mathbb{R}^{2m}} \le ||H(y_2)||_{\mathbb{R}^m} + ||M||_{\mathcal{L}(\mathbb{R}^{2m})} ||y||_{\mathbb{R}^{2m}}$$
(2.64)

Pelo que já foi provado, temos que F é contínua em \mathbb{R}^m , logo é contínua na $proj_{\mathbb{R}^{2m}}\mathbf{K}$ (projeção de \mathbf{K} sobre \mathbb{R}^{2m}). Sendo $proj_{\mathbb{R}^{2m}}\mathbf{K}$ compacto, existe uma constante positiva M_4 tal que

$$||F(y_2)||_{\mathbb{R}^{2m}} \le M_4$$
, $\forall y_2 \in \mathbb{R}^m$, tal que $(t, y) = (t, y_1, y_2) \in \mathbf{K}$. (2.65)

Por outro lado, como a aplicação

$$y \longmapsto My$$

também é contínua e a $proj_{\mathbb{R}^{2m}}\mathbf{K}$ é um compacto, temos que, existe uma constante positiva M_5 tal que

$$||My||_{\mathbb{R}^{2m}} \le M_5$$
, $\forall y_2 \in \mathbb{R}^m$, tal que $(t, y) = (t, y_1, y_2) \in \mathbf{K}$. (2.66)

Então, segue de (2.64), (2.65) e (2.66), que existe $M_6 = M_4 + M_5$ tal que

$$||F(t,y)||_{\mathbb{R}^{2m}} \le M_6$$

Assim, dos ítens (i), (ii) e (iii), segue que as condições de Carathéodory estão satisfeitas e portanto, existe uma solução Y(t) do problema de valor inicial:

$$\begin{cases} Y'(t) = F(t, y(t)) \\ Y(0) = Y^0 \end{cases}$$

em algum intervalo $[0, t_m)$, com $t_m > 0$. Mais ainda, Y(t) é absolutamente contínua e portanto diferenciável quase sempre em $[0, t_m)$. Resulta deste fato que z(t) e z'(t)são absolutamente contínuas e, conseqüentemente, z''(t) existe em quase todo ponto do intervalo $[0, t_m)$, e tal regularidade, também será herdada pelas $g_{jm's}$.

2.3.2 Estimativas à Priori

• Primeira estimativa

O Teorema de Carathéodory nos fornece que $u_m(t)$ e $u'_m(t)$ são absolutamente contínuas e como consequência deste fato as derivadas $u'_m(t)$ e $u''_m(t)$ existem no sentido de Dini.

Voltando ao problema aproximado (2.59), substituindo $v=u_m'(t),$ com $t\in[0.t_m),$ obtemos

$$(u''_m(t), u'_m(t)) + (\nabla u_m(t), \nabla u'_m(t)) + (ag(u'_m(t)), u'_m(t)) = 0$$

daí, vêm que

$$\frac{1}{2}\frac{d}{dt}\|u'_m(t)\|_2^2 + \frac{1}{2}\frac{d}{dt}\|\nabla u_m(t)\|_2^2 + \int_{\mathcal{M}} a(x)g(u'_m(t))u'_m(t)d\mathcal{M} = 0$$
 (2.67)

Integrando a expressão (2.67) de 0 a t, com $t \in [0, t_m)$ e usando a hipótese **2.1** especificamente o ítem ii), e sabendo que a é não negativa e limitada, temos que

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 \le ||u'_{1m}||_2^2 + ||\nabla u_{0m}||_2^2$$
(2.68)

da convergência dos dados iniciais, segue que existe uma constante positiva C_1 (independente de $t \in m$) tal que

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 \le C_1 \tag{2.69}$$

Por outro lado, temos

$$||Y(t)||_{\mathbb{R}^{2m}}^2 = \sum_{j=1}^m \left((g_{jm}(t))^2 + (g'_{jm}(t))^2 \right)$$
 (2.70)

e pela ortonormalidade da base $(w_j)_{j\in\mathbb{N}}$ em $L^2(\mathcal{M})$, temos

$$||u_m(t)||_{L^2(\mathcal{M})}^2 = \sum_{j=1}^m (g_{jm})^2$$
(2.71)

$$||u_m(t)||_{L^2(\mathcal{M})}^2 = \sum_{j=1}^m (g_{jm})^2$$
(2.72)

Assim, de (2.70), (2.71), (2.72) e da desigualdade de Poincaré, obtemos

$$||Y(t)||_{\mathbb{R}^{2m}} = ||u_m(t)||_{L_2(\mathcal{M})}^2 + ||u'_m(t)||_{L_2(\mathcal{M})}^2 \le \lambda ||\nabla u_m(t)||_{L^2(\mathcal{M})}^2 + ||u'_m(t)||_{L_2(\mathcal{M})}^2$$

$$\le C_2$$

onde C_2 é uma constante positiva (também independente de t e m). Desta forma, podemos prolongar a solução Y à todo intervalo $[0, +\infty)$.

Então de (2.69), com $t \in [0, \infty)$, obtemos

$$(u_m)$$
 é limitada em $L^{\infty}(0,\infty;V)$ (2.73)

$$(u'_m)$$
 é limitada em $L^{\infty}(0,\infty;L^2(\mathcal{M}))$ (2.74)

• Segunda estimativa (limitação para (u''_m))

Primeiramente, consideremos T > 0 e $\theta \in \mathcal{D}(0,T)$, observe que

$$\left\langle \frac{d}{dt}u_m, \theta \right\rangle = \left\langle u'_m, \theta \right\rangle$$

$$\left\langle \frac{d}{dt}u'_m, \theta \right\rangle = \left\langle u''_m, \theta \right\rangle$$

ou seja, as derivadas no sentido distribucional e no sentido de Dini coincidem.

Por outro lado, tendo a hipótese que g é diferenciável por partes em \mathbb{R} , temos que a derivada de g no sentido distribucional e clássico também coincidem. Assim considerando $v = w_j$ e utilizando o fato que a base $(w_\nu)_{\nu \in \mathbb{N}}$ é ortonormal em $L^2(\mathcal{M})$, obtemos do problema aproximado

$$g_m''(t) = (-\nabla u_m(t), \nabla w_j) - (ag(u_m'(t)), w_j)$$
(2.75)

Derivando (2.75) com relação a t obtemos para $\theta \in \mathcal{D}(0,T)$

$$\left\langle \frac{d}{dt}g_{jm}''(t),\theta\right\rangle = \left\langle \frac{d}{dt}(-\nabla u_m(t),\nabla w_j),\theta\right\rangle - \left\langle \frac{d}{dt}(ag(u_m'(t))),w_j),\theta\right\rangle
= \left\langle -(\nabla u_m'(t),\nabla w_j),\theta\right\rangle + \left\langle -\int_{\mathcal{M}} \frac{d}{dt}a(x)g(u_m'(x,t))w_jd\mathcal{M},\theta\right\rangle$$
(2.76)

como g é diferenciável por partes, e $u_m'(x) \in H^1(0,T)$, então

$$\frac{d}{dt}a(x)g(u'_{m}(x,t)) = a(x)g'(u'_{m}(x,t))u''_{m}(x,t)$$

e portanto

$$g_{jm}^{\prime\prime\prime}(t) = -(\nabla u_m^{\prime}(t), \nabla w_j) - \int_{\mathcal{M}} a(x)g^{\prime}(u_m^{\prime}(x,t))u_m^{\prime\prime}(x,t)w_j d\mathcal{M}$$

Vamos mostrar, que

$$g_m''' \in L^2(0,T) \tag{2.77}$$

De fato, vamos provar inicialmente que

$$\int_{\mathcal{M}} a(x)g'(u'_m(x,t))u''_m(x,t)w_j d\mathcal{M} \in L^2(0,T)$$
(2.78)

Para tanto, consideremos

$$\mathcal{M}_a = \{ x \in \mathcal{M} ; \quad |u'(x,t)| \le 1 \}$$

$$\mathcal{M}_b = \left\{ x \in \mathcal{M} \, ; \quad |u'(x,t)| > 1 \right\}$$

então

$$\int_{0}^{T} \left[\int_{\mathcal{M}} a(x)g'(u'_{m}(x,t))u''_{m}(x,t)w_{j}d\mathcal{M} \right]^{2} dt \\
= \int_{0}^{T} \left[\int_{\mathcal{M}_{a}} a(x)g'(u'_{m}(x,t))u''_{m}(x,t)w_{j}d\mathcal{M} + \int_{\mathcal{M}_{b}} a(x)g'(u'_{m}(x,t))u''_{m}(x,t)w_{j}d\mathcal{M} \right]^{2} dt \\
\leq \int_{0}^{T} \left[\|a\|_{\infty} \max_{s \in [-1,1]} |g'(s)| \int_{\mathcal{M}_{a}} |u''_{m}(x,t)| |w_{j}| d\mathcal{M} + \|a\|_{\infty} \mathcal{M} \int_{\mathcal{M}_{b}} |u''_{m}(x,t)| |w_{j}| d\mathcal{M} \right]^{2} dt \\
\leq \int_{0}^{T} \left[\left(\|a\|_{\infty} K_{1} + \|a\|_{\infty} \mathcal{M} \right) \int_{\mathcal{M}} |u''_{m}(x,t)| |w_{j}| d\mathcal{M} \right]^{2} dt \\
\leq \int_{0}^{T} \left[K \left(\int_{\mathcal{M}} |u''_{m}(x,t)|^{2} d\mathcal{M} \right)^{\frac{1}{2}} dt \\
= K^{2} \int_{0}^{T} |u''_{m}(t)|^{2}_{L^{2}(\mathcal{M})} dt$$

onde $K = ||a||_{\infty}(K_1 + M)$ e $K_1 = \max_{s \in [-1,1]} |g'(s)|$ são constantes positivas

Continuando, provaremos que $u_m'' \in L^2(0,T;L^2(\mathcal{M}))$. De fato, de (2.75) temos

$$g_m''(t) = (-\nabla u_m(t), \nabla w_j) - (ag(u_m'(t)), w_j)$$

Por um lado, como $a \in L^{\infty}(\mathcal{M})$, considerando (2.74) e os conjuntos \mathcal{M}_a e \mathcal{M}_b , obtemos

$$\int_{0}^{T} (ag(u'_{m}(t)), w_{j})^{2} dt \leq \int_{0}^{T} \|a\|_{\infty}^{2} \|g(u'_{m}(t)\|_{L^{2}(\mathcal{M})}^{2} dt
= \int_{0}^{T} \|a\|_{\infty} \int_{\mathcal{M}_{a}} |g(u'_{m}(x, t))|^{2} d\mathcal{M} dt
+ \int_{0}^{T} \|a\|_{\infty} \int_{\mathcal{M}_{b}} |g(u'_{m}(x, t))|^{2} d\mathcal{M} dt
\leq \|a\|_{\infty} \max_{s \in [-1, 1]} |g(s)|^{2} T \operatorname{med}(\mathcal{M})$$

$$+ \|a\|_{\infty}^{2} \int_{0}^{T} \int_{\mathcal{M}_{b}} K^{2} |u'_{m}(x, t)|^{2} d\mathcal{M} dt
\leq \|a\|_{\infty} \max_{s \in [-1, 1]} |g(s)|^{2} T \operatorname{med}(\mathcal{M})
+ \|a\|_{\infty}^{2} K^{2} \int_{0}^{T} \|u'_{m}(t)\|_{L^{2}(\mathcal{M})}^{2} dt
\leq \|a\|_{\infty} \max_{s \in [-1, 1]} |g(s)|^{2} T \operatorname{med}(\mathcal{M}) + \|a\|_{\infty}^{2} K^{2} C_{1} T < +\infty$$

Por outro lado, temos

$$\int_{0}^{T} (\nabla u_{m}(t), \nabla w_{j})^{2} dt \leq \int_{0}^{T} \|\nabla u_{m}(t)\|_{L^{2}(\mathcal{M})}^{2} dt \leq C(C_{1}, T) < +\infty$$
 (2.81)

Então de (2.75), (2.80) e (2.81), concluímos que $g_{jm}'' \in L^2(0,T),$ o que implica

$$\int_0^T ||u_m''(t)||_{L^2(\mathcal{M})}^2 dt \le \int_0^T |g_{jm}''(t)|^2 dt < +\infty$$

provando que $u_m'' \in L^2(0,T;L^2(\mathcal{M})).$

Provaremos agora que $||u_m''(.)||_{L^2(\mathcal{M})}^2 \in L^2(0,T)$. Com efeito, por (2.73), temos

$$\int_{0}^{T} |(\nabla u_{m}(t), \nabla w_{j})|^{4} dt \leq \int_{0}^{T} ||\nabla u_{m}(t)||_{L^{2}(\mathcal{M})}^{4} ||w_{j}||_{L^{2}(\mathcal{M})}^{4} dt$$

$$= \int_{0}^{T} ||\nabla u_{m}(t)||_{L^{2}(\mathcal{M})}^{4} dt \leq C(C_{1}, T) \qquad (2.82)$$

e também

$$\int_{0}^{T} |(ag(u'_{m}(t)), w_{j})|^{4} dt \leq \int_{0}^{T} ||ag(u'_{m}(t))||_{L^{2}(\mathcal{M})}^{4} dt$$

$$= \int_{0}^{T} \left[\int_{\mathcal{M}_{a}} |a(x)g(u'_{m}(x,t))|^{2} d\mathcal{M} + \int_{\mathcal{M}_{b}} |a(x)g(u'_{m}(x,t))|^{2} d\mathcal{M} \right]^{2} dt$$

$$\leq \int_{0}^{T} \left[||a||_{\infty}^{2} \max_{s \in [-1,1]} |g(s)| \operatorname{med}(\mathcal{M}) + ||a||_{\infty}^{2} K^{2} \int_{\mathcal{M}_{b}} |u'_{m}(x,t)|^{2} d\mathcal{M} \right]^{2} dt$$

$$\leq \int_{0}^{T} \left[\left(||a||_{\infty}^{2} \max_{s \in [-1,1]} |g(s)| \operatorname{med}(\mathcal{M}) \right)^{2} + ||a||_{\infty}^{4} K^{4} \left(\int_{\mathcal{M}} |u'_{m}(x,t)|^{2} d\mathcal{M} \right)^{2} \right] dt$$

$$= \left(||a||_{\infty}^{2} \max_{s \in [-1,1]} |g(s)| \operatorname{med}(\mathcal{M}) \right)^{2} + ||a||_{\infty}^{4} K^{4} \int_{0}^{T} ||u'_{m}(x,t)||_{L^{2}(\mathcal{M})}^{2} dt$$

$$\leq T \left(\left(||a||_{\infty}^{2} \max_{s \in [-1,1]} |g(s)| \operatorname{med}(\mathcal{M}) \right)^{2} + ||a||_{\infty}^{4} K^{4} C_{1}^{2} \right) < +\infty \tag{2.83}$$

Assim, de (2.75), (2.82) e (2.83) mostramos que $g_{jm}'' \in L^4(0,T),$ e portanto

$$\int_{0}^{T} \|u_{m}''(t)\|_{L^{2}(\mathcal{M})}^{4} dt = \int_{0}^{T} |g_{jm}''(t)|^{4} dt < +\infty$$
(2.84)

o que prova que

$$\|u_m''(.)\|_{L^2(\mathcal{M})}^2 \in L^2(0,T)$$
 (2.85)

Portanto de (2.85), implica, retornando à (2.79), que

$$\int_{\mathcal{M}} a(x)g'(u'_m(x,t))u''_m(x,t)w_j d\mathcal{M} \in L^2(0,T)$$

e como $(\nabla u_m', \nabla w_j) \in L^2(0,T)$ então $g_{jm}''' \in L^2(0,T)$, o que prova (2.77).

Derivando o problema aproximado (2.59) com relação a t e considerando $v=u_m''(t),$ temos

$$\frac{1}{2}\frac{d}{dt}\|u_m''(t)\|_2^2 + \frac{1}{2}\frac{d}{dt}\|\nabla u_m'(t)\|_2^2 + \int_{\mathcal{M}} a(x)g'(u_m'(x,t))|u_m''(x,t)|^2 d\mathcal{M} = 0$$
 (2.86)

Afirmação: $\int_{\mathcal{M}} a(x)g'(u'_m(x,t))|u''_m(x,t)|^2 d\mathcal{M} < +\infty$, ou seja, este termo está bem definido.

De fato, temos

$$\begin{split} & \left| \int_{\mathcal{M}} a(x)g'(u'_m(x,t))|u''_m(x,t)|^2 d\mathcal{M} \right| \leq \int_{\mathcal{M}} |a(x)||g'(u'_m(x,t))||u''(x,t)|^2 d\mathcal{M} \\ \leq & \|a\|_{\infty} \int_{\mathcal{M}_a} |g'(u'_m(x,t))||u''_m(x,t)|^2 d\mathcal{M} + \|a\|_{\infty} \int_{\mathcal{M}_b} |g'(u'_m(x,t))||u''_m(x,t)|^2 d\mathcal{M} \\ \leq & \|a\|_{\infty} \max_{s \in [-1,1]} |g'(s)| \int_{\mathcal{M}_a} |u''_m(x,t)|^2 d\mathcal{M} + \|a\|_{\infty} \int_{\mathcal{M}_b} M|u''_m(x,t)|^2 d\mathcal{M} \\ = & \|a\|_{\infty} \max_{s \in [-1,1]} |g'(s)| \int_{\mathcal{M}_a} |u''_m(x,t)|^2 d\mathcal{M} + \|a\|_{\infty} M \int_{\mathcal{M}_b} |u''_m(x,t)|^2 d\mathcal{M} \end{split}$$

o que prova nossa afirmação.

Voltando à expressão (2.86)

$$\frac{1}{2}\frac{d}{dt}\|u_m''(t)\|_2^2 + \frac{1}{2}\frac{d}{dt}\|\nabla u_m'(t)\|_2^2 + \int_{\mathcal{M}} a(x)g'(u_m'(x,t))|u_m''(x,t)|^2 d\mathcal{M} = 0$$

sendo g monótona crescente, segue que $g'(.) \ge 0$ e como $a \in L^{\infty}(\mathcal{M})$ é não-negativa, obtemos, integrando (2.86) de 0 a t, o seguinte

$$||u_m''(t)||_2^2 + ||\nabla u_m'(t)||_2^2 \le ||u_m''(0)||_2^2 + ||\nabla u_{1m}||_2^2$$
(2.87)

Retornando ao problema aproximado (2.59) e considerando t=0 e $v=u_m^{\prime\prime}(0),$ obtemos

$$||u''(0)||_2^2 + (\nabla u_m(0), \nabla u_m''(0)) + (ag(u_m'(0)), u_m''(0)) = 0$$
(2.88)

Observando que valendo a Fórmula de Green, vem por um lado que

$$\left(\nabla u_m(0), \nabla u_m''(0)\right) = -\left(\Delta u_m(0), u_m''(0)\right) \le \|\Delta u_m(0)\|_{L^2(\mathcal{M})} \|u_m''(0)\|_{L^2(\mathcal{M})}$$
(2.89)

Por outro lado, graças as convergências dos dados iniciais, a continuidade de g e utilizando os conjuntos \mathcal{M}_a e \mathcal{M}_b , segue que

$$\left(ag(u'_{m}(0)), u''_{m}(0) \right)^{2} \leq \|ag(u'_{m}(0))\|_{2}^{2} \|u''_{m}(0)\|_{2}^{2}$$

$$= \|u''_{m}(0)\|_{2}^{2} \int_{\mathcal{M}} |a(x)g(u'_{m}(x,0))|^{2} d\mathcal{M}$$

$$\leq \|a\|_{\infty}^{2} \|u''_{m}(0)\|_{2}^{2} \left(\int_{\mathcal{M}_{a}} |g(u'_{m}(x,0))|^{2} d\mathcal{M} + \int_{\mathcal{M}_{b}} |g(u'_{m}(x,0))|^{2} d\mathcal{M} \right)$$

$$\leq \|a\|_{\infty} \|u''_{m}(0)\|_{2}^{2} \left(\max_{s \in [-1,1]} |g(s)|^{2} \operatorname{med}(\mathcal{M}) + K^{2} \|u_{1m}\|_{2}^{2} \right)$$

$$(2.90)$$

Denotando $||a||_{\infty} = \Lambda_1$, $\max_{s \in [-1,1]} |g(s)|^2 \operatorname{med}(\mathcal{M}) = \Lambda_2$, sabendo que existe uma constante positiva C^* tal que $||u_{1m}||_2 \leq C^*$, pondo $K^2C^{*2} = \Lambda_3$, então desta maneira, existe $C(\Lambda_1, \Lambda_2, \Lambda_3)$, que satisfaz a desigualdade (2.89). Logo, de (2.88), (2.89) e (2.90) vem que

$$||u''_{m}(0)||_{L^{2}(\mathcal{M})}^{2} = \left(\Delta u_{m}(0), u''_{m}(0)\right) - \left(ag(u'_{m}(0)), u''_{m}(0)\right)$$

$$\leq \left|\left(\Delta u_{m}(0), u''_{m}(0)\right)\right| + \left|\left(ag(u'_{m}(0)), u''_{m}(0)\right)\right|$$

$$\leq \left\{||\Delta u_{m}(0)||_{L^{2}(\mathcal{M})} + C(\Lambda_{1}, \Lambda_{2}, \Lambda_{3})\right\}||u''_{m}(0)||_{L^{2}(\mathcal{M})}$$

daí vem que

$$||u_m''(0)||_{L^2(\mathcal{M})}^2 \le ||\Delta u_m(0)||_{L^2(\mathcal{M})} + C \tag{2.91}$$

Logo de (2.87) e (2.91), obtemos

$$||u_m''(t)||_{L^2(\mathcal{M})}^2 + ||\nabla u_m'(t)||_{L^2(\mathcal{M})}^2 \le ||u_m''(0)||_{L^2(\mathcal{M})}^2 + ||\nabla u_m'(0)||_{L^2(\mathcal{M})}^2$$

$$\le \{||\Delta u_m(0)||_{L^2(\mathcal{M})} + C\}^2 + ||\nabla u_m'(0)||_{L^2(\mathcal{M})}^2$$
(2.92)

graças às convergências do problema aproximado, obtemos de (2.92), a existência de uma constante positiva C_2 tal que

$$||u_m''(t)||_{L^2(\mathcal{M})}^2 + ||\nabla u_m'(t)||_{L^2(\mathcal{M})}^2 \le C_2$$
(2.93)

Donde concluímos que

$$(u'_m)$$
 é limitada em $L^{\infty}(0,\infty;V)$ (2.94)

$$(u_m'')$$
 é limitada em $L^{\infty}(0,\infty;L^2(\mathcal{M}))$ (2.95)

Passagem ao Limite

Com uso das estimativas a priori, passaremos ao estudo da existência de solução regular para o nosso problema. Observe inicialmente, que o Teorema da Representação de Riesz, garante que

$$L^{\infty}(0,T;V) \equiv \left[L^{1}(0,T;V')\right]'$$

$$L^{\infty}(0,T;L^{2}(\mathcal{M})) \equiv \left[L^{1}(0,T;L^{2}(\mathcal{M}))\right]'$$

como os espaços $L^1(0,T;V')$ e $L^1(0,T;L^2(\mathcal{M}))$ são separáveis, obtemos de (2.73), (2.94) e (2.95), a existência de subsequências de (u_m) , (u'_m) e (u''_m) , que ainda denotaremos da mesma forma, tais que

$$u_m \stackrel{\star}{\rightharpoonup} u \quad \text{em} \quad L^{\infty}(0, T; V)$$
 (2.96)

$$u_m' \stackrel{\star}{\rightharpoonup} \bar{u} \quad \text{em} \quad L^{\infty}(0, T; V)$$
 (2.97)

$$u_m'' \stackrel{\star}{\rightharpoonup} \bar{u} \quad \text{em} \quad L^{\infty}(0, T; L^2(\mathcal{M}))$$
 (2.98)

e como $V \hookrightarrow L^2(\mathcal{M})$, temos de (2.96) que

$$u_m \stackrel{\star}{\rightharpoonup} u \text{ em } L^{\infty}(0,T;L^2(\mathcal{M}))$$

sendo (0,T) limitado, temos $L^{\infty}(0,T;L^2(\mathcal{M})) \hookrightarrow L^2(0,T;L^2(\mathcal{M}))$

Agora fazendo a identificação $L^2(0,T;L^2(\mathcal{M})) \equiv L^2(Q)$, por sua reflexividade, obtemos a existência de uma subsequência de $(u_m)_{m\in\mathbb{N}}$, a qual ainda denotaremos por (u_m) , tal que

$$u_m \rightharpoonup u \text{ em } L^2(Q), \text{ onde } Q = \mathcal{M} \times [0, T].$$

Como a convergência fraca em $L^2(Q)$ implica na convergência no sentido das distribuições, temos que

$$u_m \longrightarrow u \quad \text{em} \quad \mathcal{D}'(Q)$$

sendo a derivação uma operação contínua em $\mathcal{D}'(Q)$, segue que

$$u'_m \longrightarrow u' \quad \text{em} \quad \mathcal{D}'(Q)$$

Por outro lado, de (2.97), temos

$$u'_m \rightharpoonup \bar{u} \text{ em } L^2(Q)$$

portanto, de modo análogo ao caso anterior, temos

$$u'_m \longrightarrow \bar{u} \text{ em } \mathcal{D}'(Q)$$

Das duas afirmações acima, obtemos pela unicidade do limite fraco, que $\bar{u}=u'$ em $L^2(Q)$, e também de maneira análoga segue que $\bar{u}=u''$. Portanto

$$u'_m \stackrel{\star}{\rightharpoonup} u' \quad \text{em} \quad L^{\infty}(0, T; V)$$
 (2.99)

$$u_m'' \stackrel{\star}{\rightharpoonup} u'' \quad \text{em} \quad L^{\infty}(0, T; L^2(\mathcal{M}))$$
 (2.100)

Agora, como $V \stackrel{c}{\hookrightarrow} L^2(\mathcal{M})$, provem de (2.99) e (2.100) face ao Teorema da Compacidade de Aubin-Lions que existe uma subsequência a qual ainda denotaremos da mesma forma, de modo que

$$u'_m \longrightarrow u'$$
 em $L^2(0,T;L^2(\mathcal{M}))$

e então

$$u'_m \longrightarrow u'$$
 quase sempre em $\mathcal{M} \times [0, T]$

Da hipótese de que g é contínua, segue da convergência acima que

$$g(u'_m) \longrightarrow g(u')$$
 quase sempre em $\mathcal{M} \times [0, T]$ (2.101)

Observemos também que

$$\int_{0}^{T} \int_{\mathcal{M}} |a(x)g(u'_{m}(x,t))|^{2} d\mathcal{M} dt$$

$$= \int_{0}^{T} \left[\int_{\mathcal{M}_{a}} |a(x)g(u'_{m})|^{2} d\mathcal{M} + \int_{\mathcal{M}_{b}} |a(x)g(u'_{m})|^{2} d\mathcal{M} \right] dt$$

$$\leq \int_{0}^{T} \left[||a||_{\infty}^{2} \max_{s \in [-1,1]} |g(s)|^{2} \operatorname{med}(\mathcal{M}) + ||a||_{\infty}^{2} K^{2} ||u'_{m}||_{L^{2}(\mathcal{M})}^{2} \right] dt \qquad (2.102)$$

Segue de (2.102) e (2.74) que existirá uma constante $C(T, \text{med}(\mathcal{M}), C_1, K, K_1, K_2)$, onde $K_1 = \max_{s \in [-1,1]} |g(s)|^2$ e $K_2 = ||a||_{\infty}$, tal que

$$\int_{0}^{T} \|ag(u'_{m}(t))\|_{L^{2}(\mathcal{M})}^{2} dt \le C \tag{2.103}$$

 $||u_{\nu}||_{L^2(Q)} \leq C$ Assim de (2.101) e (2.103), e do Lema de Lions segue que existe uma subsequência, que ainda seguiremos denotando da mesma forma, tal que

$$a(x)g(u'_m) \rightharpoonup a(x)g(u') \quad \text{em} \quad L^2(0,T;L^2(\mathcal{M}))$$
 (2.104)

Seja $j \in \mathbb{N}$ e consideremos m > j. Multiplicando a equação do problema aproximado por $\theta \in \mathcal{D}(0,T)$, considerando $v = w_j$ e integrando de 0 a T, obtemos a seguinte expressão

$$\int_{0}^{T} (u''_{m}(t), w_{j}) \theta(t) dt + \int_{0}^{T} (\nabla u_{m}(t), \nabla w_{j}) \theta(t) dt + \int_{0}^{T} (ag(u'_{m}(t)), w_{j}) \theta(t) dt = 0 \quad (2.105)$$

Então, pelas convergências dadas em (2.99), (2.100) e (2.104), obtemos de (2.105), quando passamos o limite em $m \to +\infty$,

$$\int_{0}^{T} (u''(t), w_{j}) \theta(t) dt + \int_{0}^{T} (\nabla u(t), \nabla w_{j}) \theta(t) dt + \int_{0}^{T} (ag(u'(t)), w_{j}) \theta(t) dt = 0 \quad (2.106)$$

como a base $(w_j)_{j\in\mathbb{N}}$ é um sistema completo em V, temos de (2.106) que

$$\int_{0}^{T} (u''(t), v) \theta(t) dt + \int_{0}^{T} (\nabla u(t), \nabla v) \theta(t) dt + \int_{0}^{T} (ag(u'(t)), v) \theta(t) dt = 0$$
 (2.107)

 $\forall \theta \in \mathcal{D}(0,T) \text{ e } \forall v \in V.$

Também note que, $v,u(t)\in V\hookrightarrow H^1(\mathcal{M})$ e $-\Delta:H^1(\mathcal{M})\longrightarrow H^{-1}(\mathcal{M})$ é um operador linear e contínuo onde temos

$$\langle -\Delta u(t), v \rangle_{H^{-1}(\mathcal{M}) \times H^{1}(\mathcal{M})} = (\nabla u(t), \nabla v)$$
(2.108)

Logo de (2.107) e (2.108) obtemos

$$\int_0^T \left[\left(u''(t), v \right) \theta(t) - \left\langle \Delta u(t), v \right\rangle \theta(t) + \left(ag(u'(t)), v \right) \theta(t) \right] dt = 0$$

fazendo $v = \varphi \in \mathcal{D}(\mathcal{M})$, concluímos que

$$\langle u'' - \Delta u + ag(u'), \varphi \theta \rangle = 0 \quad , \ \forall \varphi \in \mathcal{D}(\mathcal{M}), \ \forall \theta \in \mathcal{D}(0, T)$$
 (2.109)

notando que a dualidade acima, ocorre em $\mathcal{D}'(\mathcal{M} \times (0,T)) \times \mathcal{D}(\mathcal{M} \times (0,T))$

Como o conjunto

$$R = \{\theta \varphi : \theta \in \mathcal{D}(0,T), \varphi \in \mathcal{D}(\mathcal{M})\}\$$

é completo em $\mathcal{D}(\mathcal{M} \times (0,T))$, então de (2.109), temos

$$u'' - \Delta u + ag(u') = 0 \quad \text{em} \quad \mathcal{D}'(\mathcal{M} \times (0, T))$$
 (2.110)

Por outro lado, como $u'' \in L^{\infty}(0,T;L^2(\mathcal{M}))$ e $ag(u') \in L^{\infty}(0,T;L^2(\mathcal{M}))$, temos de (2.110) que $\Delta u \in L^{\infty}(0,T;L^2(\mathcal{M}))$ e conseqüentemente

$$u'' - \Delta u + ag(u') = 0$$
 em $L^{\infty}(0, T; L^{2}(\mathcal{M}))$

fixando $t \ge 0$, consideremos o problema elíptico

$$\Delta u(t) = u(t) + ag(u'(t))$$
 em \mathcal{M}

Segue de um resultado de regularidade elíptica, que para cada $t \in [0,T]$ fixado $u(t) \in H^2(\mathcal{M})$ e além disso

$$||u(t)||_{H^2(\mathcal{M})} \le C||\Delta u(t)||_{L^2(\mathcal{M})}$$

Assim

$$||u(t)||_{H^{2}(\mathcal{M})} \leq C||\Delta u(t)||_{L^{2}(\mathcal{M})} = C||u''(t) + ag(u'(t))||_{L^{2}(\mathcal{M})}$$

$$\leq C||u''(t)||_{L^{2}(\mathcal{M})} + C||ag(u'(t))||_{L^{2}(\mathcal{M})}$$

$$\leq C_{1}^{*}$$

onde $C_1^*(C_1, C, \text{med}(\mathcal{M}), ||a||_{\infty}, T)$ provando que $u \in L^{\infty}(0, T; H^2(\mathcal{M}))$

Por fim, notemos que a norma em $V \cap H^2(\mathcal{M})$ é equivalente à norma

$$||.||_{H^1(\mathcal{M})} + ||\Delta.||_{L^2(\mathcal{M})}$$

Portanto, concluímos que $u \in L^{\infty}(0,T;V\cap H^2(\mathcal{M}))$, provando a existência da solução regular. \Box

2.3.3 Dados Iniciais

Primeiramente, notemos que $u' \in L^2(0,T;L^2(\mathcal{M}))$ e $u'' \in L^2(0,T;L^2(\mathcal{M}))$ então, $u' \in H^1(0,T;L^2(\mathcal{M})) \hookrightarrow C([0,T];L^2(\mathcal{M}))$. O que nos permite calcular u'(0) e u'(T).

Sejam $\theta \in C^1([0,T];\mathbb{R})$, satisfazendo $\theta(0)=1$ e $\theta(T)=0, j\in\mathbb{N}$ e $\mu\in\mathbb{N}$ de modo que $\mu>j$. Procedendo de maneira análoga ao que fizemos na prova da existência de

solução regular temos

$$\int_0^T \left(u''_{\mu}(t), w_j\right) \theta(t) dt \longrightarrow \int_0^T \left(u''(t), w_j\right) \theta(t) dt$$

integrando por partes

$$-\left(u_{\mu}(0), w_{j}\right) - \int_{0}^{T} \left(u'_{\mu}(t), w_{j}\right) \theta(t) dt \longrightarrow -\left(u(0), w_{j}\right) - \int_{0}^{T} \left(u'(t), w_{j}\right) \theta(t) dt$$

e notando que

$$u'_{\mu} \stackrel{\star}{\rightharpoonup} u' \text{ em } L^{\infty}(0,T;L^{2}(\mathcal{M}))$$

obtemos

$$\int_0^T \left(u'_{\mu}(t), w_j\right) \theta(t) dt \longrightarrow \int_0^T \left(u'(t), w_j\right) \theta(t) dt.$$

Consequentemente

$$-(u_{\mu}(0), w_j) \longrightarrow -(u(0), w_j)$$
, $\forall j \in \mathbb{N}$.

Em vista da completude da base $(w_j)_{j\in\mathbb{N}}$ em $L^2(\mathcal{M})$, decorre que

$$u'_{\mu}(0) \rightharpoonup u'(0) \quad \text{em} \quad L^2(\mathcal{M}).$$

Por outro lado, o problema aproximado nos fornece

$$u'_{\mu}(0) \rightharpoonup u^1 \text{ em } V \hookrightarrow L^2(\mathcal{M}).$$

Donde concluímos, devido a unicidade do limite que $u'(0) = u^1$. Agora posto que $u \in L^{\infty}(0,T;V \cap H^2(\mathcal{M})) \hookrightarrow L^2(0,T;L^2(\mathcal{M})), \ u' \in L^2(0,T;L^2(\mathcal{M}))$ e portanto $u \in H^1(0,T;L^2(\mathcal{M}))$. Analogamente, prova-se que $u(0) = u^0$.

2.3.4 Unicidade de Solução Regular

Consideremos u_1 e u_2 soluções regulares dos respectivos problemas

$$\begin{cases}
 u_1'' - \Delta u_1 + ag(u_1') = 0 \\
 u_1(0) = u^0, \ u_1'(0) = u^1
\end{cases}
\begin{cases}
 u_2'' - \Delta u_2 + ag(u_2') = 0 \\
 u_2(0) = u^0, \ u_2'(0) = u^1
\end{cases}$$
(2.111)

Pondo $z = u_1 - u_2$, obtemos de (2.111), o seguinte problema

$$\begin{cases} z'' - \Delta z + ag(u_1') - ag(u_2') = 0\\ z(0) = 0 = z'(0) \end{cases}$$
 (2.112)

como para cada $t \ge 0$ as funções z(t), z'(t), z''(t) e $\Delta z(t)$ pertencem a $L^2(\mathcal{M})$, então da primeira linha de (2.112), temos

$$\frac{1}{2}\frac{d}{dt}\|z'(t)\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\frac{d}{dt}\|\nabla z(t)\|_{L^2(\mathcal{M})}^2 + \int_{\mathcal{M}} a(x)\big(g(u_1') - g(u_2')\big)\big(u_1' - u_2'\big)d\mathcal{M} = 0$$

integrando a expressão acima de 0 a t, e utilizando o fato de g ser monótona e a nãonegativa, obtemos

$$||z'(t)||_{L^2(\mathcal{M})} + ||\nabla z(t)||_{L^2(\mathcal{M})}^2 \le 0$$

donde concluímos que z(t)=0 em $V, \forall t\in [0,T],$ o que prova a unicidade de solução regular.

2.3.5 Soluções Fracas para o Problema Não-Linear

Seja $\{u^0,u^1\}\in V\times L^2(\mathcal{M})$. Como $V\cap H^2(\mathcal{M})$ é denso em V e V é denso em $L^2(\mathcal{M})$, existe $\{u^0_\mu,u^1_\mu\}\in V\cap H^2(\mathcal{M})\times V$ tal que

$$\{u^0_\mu, u^1_\mu\} \longrightarrow \{u^0, u^1\} \text{ em } V \times L^2(\mathcal{M}).$$
 (2.113)

Desta maneira, para cada $\mu \in \mathbb{N}$, existe uma solução u_{μ} do seguinte problema

$$\begin{cases}
 u''_{\mu} - \Delta u_{\mu} + ag(u'_{\mu}) = 0 \\
 u_{\mu}(0) = u^{0}_{\mu}, \ u'_{\mu}(0) = u^{1}_{\mu}
\end{cases} (2.114)$$

Considere $z_{\mu,\sigma}=u_{\mu}-u_{\sigma}$. Pelos mesmos argumentos utilizados na unicidade de solução regular obtemos

$$||z'_{\mu,\sigma}(t)||_{L^2(\mathcal{M})}^2 + ||\nabla z_{\mu,\sigma}(t)||_{L^2(\mathcal{M})}^2 \le ||z'_{\mu,\sigma}(0)||_{L^2(\mathcal{M})}^2 + ||\nabla z_{\mu,\sigma}(0)||_{L^2(\mathcal{M})}^2$$
(2.115)

o membro à direita da desigualdade acima converge para zero, pois (u_{ν}^{0}) e (u_{ν}^{1}) são convergentes em V e $L^{2}(\mathcal{M})$ respectivamente, daí concluímos que

$$(u_{\mu})$$
 é uma sequência de Cauchy em $C(\mathbb{R}_{+}; V)$ (2.116)

$$(u'_{\mu})$$
 é uma sequência de Cauchy em $C(\mathbb{R}_+; L^2(\mathcal{M}))$ (2.117)

sendo $C(\mathbb{R}_+; V)$ e $C(\mathbb{R}_+; L^2(\mathcal{M}))$ completos, existem $u \in C(\mathbb{R}_+; V)$ e $u' \in C(\mathbb{R}_+; L^2(\mathcal{M}))$ respectivamente, tais que

$$u_{\mu} \longrightarrow u \text{ em } C(\mathbb{R}_{+}; V)$$
 (2.118)

$$u'_{\mu} \longrightarrow u' \quad \text{em} \quad C(\mathbb{R}_+; L^2(\mathcal{M}))$$
 (2.119)

em consequência disto, temos para o intervalo [0, T] com T > 0 de (2.119)

$$u'_{\mu} \longrightarrow u' \quad \text{em} \quad L^2([0,T]; L^2(\mathcal{M}))$$
 (2.120)

$$g(u'_{\mu}) \longrightarrow \chi \quad \text{em} \quad L^2([0,T]; L^2(\mathcal{M})).$$
 (2.121)

Nossa prioridade agora é mostrar que $\chi = g(u')$.

Com efeito, por um lado temos que $u''_{\mu} - \Delta u_{\mu} + ag(u'_{\mu}) = 0$ em $L^2(0,T;L^2(\mathcal{M}))$, disto vem que

$$\int_0^T \int_{\mathcal{M}} a(x)g(u'_{\mu})u'_{\mu}d\mathcal{M}dt = \frac{1}{2} \left\{ -\|u'_{\mu}(t)\|_2^2 - \|\nabla u_{\mu}(t)\|_2^2 + \|u'_{\mu}(0)\|_2^2 + \|\nabla u_{\mu}(0)\|_2^2 \right\}.$$

Pelas convergências provadas antes

$$\lim_{\mu \to \infty} \int_0^T \!\! \int_{\mathcal{M}} \!\! a(x) g(u'_\mu) u'_\mu d\mathcal{M} dt = \frac{1}{2} \bigg\{ - \|u'(t)\|_2^2 - \|\nabla u(t)\|_2^2 + \|u^1\|_2^2 + \|\nabla u^0\|_2^2 \bigg\} \,.$$

Por outro lado, note que w é solução do seguinte problema (basta tomar $f = -a(x)\chi$ no apêndice deste capítulo)

$$\begin{cases} w'' - \Delta w + a(x)\chi = 0 & \text{em } \mathcal{M} \times (0, T) \\ w(0) = u^0, \ w'(0) = u^1 \end{cases}$$
 (2.122)

e também essa solução verifica a identidade de energia (ver apêndice). Logo

$$\int_0^t \!\! \int_{\mathcal{M}} \!\! a(x) \chi w'(s) d\mathcal{M} ds = \frac{1}{2} \left\{ -\|w'(t)\|_2^2 - \|\nabla w(t)\|_2^2 + \|u^1\|_2^2 + \|\nabla u^0\|_2^2 \right\}$$

Porém na passagem ao limite, temos que u é solução fraca de

$$\begin{cases} u'' - \Delta u + a(x)\chi = 0 & \text{em } \mathcal{M} \times (0, T) \\ u(0) = u^0, \ u'(0) = u^1 \end{cases}$$
 (2.123)

e satisfaz a identidade de energia

$$\int_{0}^{t} \int_{\mathcal{M}} a(x)\chi u'(s)d\mathcal{M}ds = \frac{1}{2} \left\{ -\|u'(t)\|_{2}^{2} - \|\nabla u(t)\|_{2}^{2} + \|u^{1}\|_{2}^{2} + \|\nabla u^{0}\|_{2}^{2} \right\}$$

pela unicidade do limite dos problemas, concluímos que

$$\lim_{\mu \to \infty} \int_0^T \int_{\mathcal{M}} a(x)g(u'_{\mu}(x,s))u'_{\mu}(x,s)d\mathcal{M}ds = \int_0^t \int_{\mathcal{M}} a(x)\chi(x,s)u'(x,s)d\mathcal{M}ds \qquad (2.124)$$

Agora note que de (2.120) e (2.121), temos

$$u'_{\mu} \rightharpoonup u' \quad \text{em} \quad L^2([0,T];L^2(\mathcal{M}))$$

$$g(u'_{\mu}) \rightharpoonup \chi \quad \text{em} \quad L^2([0,T];L^2(\mathcal{M})).$$

Então disto e da convergência em (2.124) implicam que, para toda $\psi \in L^2(0,T;L^2(\mathcal{M}))$

$$\int_0^T (\chi(s) - g(\psi), u'(s) - \psi) ds = \lim_{\mu \to +\infty} \int_0^T (g(u'_{\mu}(s)) - g(\psi), u'_{\mu}(s) - \psi) ds \ge 0$$
 (2.125)

pois g é monótona não-decrescente. O que implica $\chi = g(u')$.

Com efeito, mostraremos inicialmente, que

$$\int_{0}^{T} \int_{\mathcal{M}} g(u' - \lambda v) v d\mathcal{M} dt \longrightarrow \int_{0}^{T} \int_{\mathcal{M}} g(u') v d\mathcal{M} dt \tag{2.126}$$

quando $\lambda \to 0, \, \forall v \in L^2(0,T;L^2(\mathcal{M}))$.

De fato, como

$$u'(x,t) - \lambda v(x,t) \longrightarrow u'(x,t)$$
 q.s em $\mathcal{M} \times (0,T)$

quando $\lambda \to 0$, com T > 0 e g é contínua, então

$$g(u'(x,t) - \lambda v(x,t)) \longrightarrow g(u'(x,t))$$
 q.s em $\mathcal{M} \times (0,T)$ (2.127)

quando $\lambda \to 0$.

Da hipótese 2.1, temos

$$|g(u'(x,t) - \lambda v(x,t))| \le \begin{cases} g(1) &, |u'(x,t) - \lambda v(x,t)| \le 1\\ K|u'(x,t) - \lambda v(x,t)| &, |u'(x,t) - \lambda v(x,t)| > 1 \end{cases} (2.128)$$

ou seja

$$\left| g(u'(x,t) - \lambda v(x,t)) \right| \le \underbrace{g(1) + K|u'(x,t)| + K|v(x,t)|}_{\in L^2(0,T;L^2(\mathcal{M})) \equiv L^2(\mathcal{M} \times (0,T))} , \text{ com } \lambda < 1$$
 (2.129)

posto que g(1) > 0.

De (2.127), (2.129) e pelo Teorema da Convergência Dominada de Lebesgue segue (2.126). Consideremos então, $\psi=u'-\lambda v$, onde $v\in L^2(0,T;L^2(\mathcal{M}))$. Segue de (2.125)que

$$\lambda\!\int_0^T\!\! \left(\chi(t)-g(u'(t)-\lambda v(t)),v(t)\right)dt = \!\int_0^T\!\! \left(\chi(t)-g(u'(t)-\lambda v(t)),u'(t)-(u'(t)-\lambda v(t))\right)dt \geq 0\,.$$

Desta forma

(i) $\int_0^T (\chi - g(u' - \lambda v), v) dt \ge 0$ se $\lambda > 0$. Tomando o limite quando $\lambda \to 0^+$ vem de (2.126) que

$$\int_{0}^{T} (\chi - g(u'), v) dt \ge 0 \quad , \forall v \in L^{2}(0, T; L^{2}(\mathcal{M})).$$
 (2.130)

(ii) $\int_0^T (\chi - g(u' - \lambda v), v) dt \le 0$ se $\lambda < 0$. Tomando o limite quando $\lambda \to 0^-$ decorre de (2.126) que

$$\int_{0}^{T} (\chi - g(u'), v) dt \le 0 \quad , \forall v \in L^{2}(0, T; L^{2}(\mathcal{M})).$$
 (2.131)

Portanto de (2.130) e (2.131), resulta que

$$\int_0^T (\chi - g(u'), v) dt = 0 \quad , \forall v \in L^2(0, T; L^2(\mathcal{M})).$$

Tomando $v = \chi - g(u')$, segue que $\chi = g(u')$, o que prova o desejado. Então, por argumentos análogos aos feitos no problema linear, chegamos à conclusão que u satisfaz:

$$u'' - \Delta u + ag(u') = 0$$
 em $\mathcal{D}'(\mathcal{M} \times (0, T))$.

Agora como $ag(u') \in L^{\infty}(0,T;L^{2}(\mathcal{M}))$ e $\Delta \in \mathcal{L}(V,H^{-1}(\mathcal{M}))$, concluímos que $u'' \in L^{\infty}(0,T;H^{-1}(\mathcal{M}))$. Além disso de (2.116) e (2.117), temos $u \in C(0,T;V) \cap C^{1}(0,T;L^{2}(\mathcal{M}))$, provando a existência da solução fraca.

A solução fraca obtida por aproximação de soluções regulares, satisfaz a identidade da energia.

2.3.6 Unicidade de Solução Fraca

Sejam u_1 e u_2 duas soluções fracas de (2.52), denotando $w=u_1-u_2$, então w satisfaz ao problema

$$\begin{cases} w'' - \Delta w + ag(u_1') - ag(u_2') = 0 \\ w(0) = 0 = w'(0) \end{cases}$$

como w(0)=0 e w'(0)=0, temos da identidade da energia, (provada no apêndice deste capítulo), com f=-ag(u'(t)) que

$$||w'(t)||_{L^2(\mathcal{M})}^2 + ||\nabla w(t)||_{L^2(\mathcal{M})}^2 = -2\int_0^T (a(g(u_1'(t)) - g(u_2'(t)), u_1'(t) - u_2'(t)))dt \quad (2.132)$$

Pela limitação de a e monotonocidade de g, obtemos de (2.132) que w(t) = 0 em $H^1(\mathcal{M})$ para todo t, o que prova a unicidade.

2.4 Existência de Soluções via teoria de Semigrupos

Utilizando resultados da teoria de Semigrupos, estudaremos a existência, unicidade e algumas propriedades da solução do nosso problema. Para isso, considere o seguinte resultado.

2.4.1 Existência e unicidade e soluções regulares em $[0, T_{max})$

Considere o problema não-homogêneo

$$\begin{cases} \frac{du}{dt} + Au = F(u) \\ u(0) = u^0 \end{cases}$$
 (2.133)

Teorema 2.3. Seja $F: H \longrightarrow H$ uma função localmente Lipschitz,ou seja, para todo M > 0 existe $L_M > 0$ tal que |u| < M e |v| < M implica que $|F(u) - F(v)| \le L_M |u - v|$.

Então, para todo $u_0 \in H$ existe u solução generalizada do problema (2.133) em [0,T] e esta pode ser estendida em uma solução maximal sobre $[0,T_{\max})$, com $T_{\max} = +\infty$ ou $T_{\max} < +\infty$ e $\lim_{t \to T_{\max}} \|u(t)\|_H = +\infty$.

Se $u_0 \in D(A)$, a solução é clássica.

Demonstração: Ver [7].

Primeiramente, escrevemos o problema

$$\begin{cases} u_{tt} - \Delta u + a(x)g(u_t) = 0 \\ u(0) = u^0, \ u_t(0) = u^1 \end{cases}$$
 (2.134)

onde $a \in L^{\infty}(\mathcal{M})$, é uma função não negativa, e g é suposta globalmente Lipschitz, ou seja

$$|g(s_1) - g(s_2)| \le K|s_1 - s_2|, \, \forall s_1, s_2 \in \mathbb{R}$$
 (2.135)

para algum K > 0, o problema (2.134) pode ser escrito da seguinte forma:

i) Fazendo

$$U = \begin{pmatrix} u \\ u_t \end{pmatrix} \Longrightarrow \frac{dU}{dt} = \begin{pmatrix} u_t \\ u_{tt} \end{pmatrix} = \begin{pmatrix} u_t \\ \Delta u - a(x)g(u_t) \end{pmatrix}$$

$$= \begin{pmatrix} u_t \\ \Delta u \end{pmatrix} + \begin{pmatrix} 0 \\ -a(x)g(u_t) \end{pmatrix} = \begin{pmatrix} 0 & I \\ \Delta & 0 \end{pmatrix} \begin{pmatrix} u \\ u_t \end{pmatrix} + \begin{pmatrix} 0 \\ -a(x)g(u_t) \end{pmatrix}$$

$$\text{definamos } U = \begin{pmatrix} u \\ u_t \end{pmatrix}, A = \begin{pmatrix} 0 & -I \\ -\Delta & 0 \end{pmatrix}, U_0 = \begin{pmatrix} u^0(x) \\ u^1(x) \end{pmatrix} \text{ e}$$

$$F: H \longrightarrow H$$

$$U \longmapsto F(U) = \begin{pmatrix} 0 \\ a(x)g(u_t) \end{pmatrix}$$

então o problema inicial nos leva ao seguinte problema

$$\begin{cases} \frac{dU}{dt} + AU + F(U) = 0\\ U(0) = U_0 \end{cases}$$
(2.136)

consideremos $H = V \times L^2(\mathcal{M})$ e

$$\begin{array}{ccc} A: & D(A) \subset H & \longrightarrow H \\ & \begin{pmatrix} u \\ v \end{pmatrix} & \longmapsto A \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -v \\ -\Delta u \end{pmatrix} \end{array}$$

com $||U||_H^2 = ||u||_V^2 + ||v||_{L^2(\mathcal{M})}^2$ e $||U||_{D(A)} = ||Au||_{L^2(\mathcal{M})}^2 + ||v||_V^2$

ii) Caracterização de D(A).

Temos que $D(A) = \{U \in H : AU \in H\}$, ou seja

$$D(A) = \{(u, v) \in H ; u \in V, v \in V \in \Delta u \in L^2(\mathcal{M})\}.$$

Agora note que $\{u \in V : \Delta u \in L^2(\mathcal{M})\} = V \cap H^2(\mathcal{M}).$

Logo concluímos que $D(A) = (V \cap H^2(\mathcal{M})) \times V$

iii) A é monótono

Com efeito,

$$(AU, U)_H = \begin{pmatrix} \begin{pmatrix} -v \\ -\Delta u \end{pmatrix}, \begin{pmatrix} u \\ v \end{pmatrix} \end{pmatrix} = (-v, u)_V + (-\Delta u, v)_{L^2(\mathcal{M})}$$

$$= -(\nabla v, \nabla u)_{L^2(\mathcal{M})} + (\nabla u, \nabla v)_{L^2(\mathcal{M})} = 0$$

iv) A é maximal. (Mostraremos que Im(I+A)=H)

De fato, seja $F=\begin{pmatrix} f\\g \end{pmatrix}\in H.$ Vamos mostrar que existe $U=\begin{pmatrix} u\\v \end{pmatrix}\in D(A),$ tal que (I+A)U=F, isto é

$$\left(\begin{array}{c} u \\ v \end{array}\right) + \left(\begin{array}{c} -v \\ -\Delta u \end{array}\right) = \left(\begin{array}{c} f \\ g \end{array}\right)$$

o que é o mesmo que

$$\begin{cases} u - v = f \\ v - \Delta u = g \end{cases}$$

então fazendo v = u - f no último sistema, temos que

$$u - \Delta u = f + g \tag{2.137}$$

Se u é solução de (2.137),
então, fazendo o produto interno em $L^2(\mathcal{M})$ desta equação por
 $\varphi \in V$, temos

$$(u,\varphi) + (-\Delta u,\varphi) = (f+g,\varphi), \forall \varphi \in V$$

o que implica

$$(u,\varphi) + (\nabla u, \nabla \varphi) = (f+g,\varphi), \forall \varphi \in V$$

isto é

$$\int_{\mathcal{M}} u\varphi d\mathcal{M} + \int_{\mathcal{M}} \nabla u \cdot \nabla \varphi d\mathcal{M} = \int_{\mathcal{M}} (f+g)\varphi d\mathcal{M}. \tag{2.138}$$

Afirmação: (2.138) possui uma única solução.

De fato, definamos $b:V\times V\longrightarrow \mathbb{R}$ e $T:V\longrightarrow \mathbb{R}$, respectivamente por

$$b(u, v) = \int_{\mathcal{M}} u\varphi d\mathcal{M} + \int_{\mathcal{M}} \nabla u \cdot \nabla \varphi d\mathcal{M}$$
$$e \quad \langle T, \varphi \rangle = \int_{\mathcal{M}} (f + g)\varphi d\mathcal{M}$$

onde V tem imersão compacta em $L^2(\mathcal{M})$.

• b é contínua

Com efeito, pelas desigualdades de Hölder e Poincaré, temos

$$|b(u,v)| \leq \int_{M} |u||\varphi|d\mathcal{M} + \int_{\mathcal{M}} |\nabla||\nabla\varphi|d\mathcal{M} \leq ||u||_{L^{2}(\mathcal{M})} ||\varphi||_{L^{2}(\mathcal{M})} + ||\nabla u||_{L^{2}(\mathcal{M})} ||\nabla\varphi||_{L^{2}(\mathcal{M})}$$

$$\leq K_{p} ||\nabla u||_{L^{2}(\mathcal{M})} ||\nabla\varphi||_{L^{2}(\mathcal{M})} + ||\nabla u||_{L^{2}(\mathcal{M})} ||\nabla\varphi||_{L^{2}(\mathcal{M})}$$

$$= (K_{p}+1) ||\nabla u||_{L^{2}(\mathcal{M})} ||\nabla\varphi||_{L^{2}(\mathcal{M})}$$

$$= (K_{p}+1) ||u||_{V} ||\varphi||_{V}$$

para todo $u, \varphi \in V$.

ullet b é coerciva

Com efeito

$$b(u,u) = \int_{\mathcal{M}} u^2 d\mathcal{M} + \int_{\mathcal{M}} |\nabla u|^2 d\mathcal{M} \ge \int_{\mathcal{M}} |\nabla u|^2 d\mathcal{M} = ||u||_V^2$$

• T é contínua

Mais uma vez, pelas desigualdades de Hölder e de Poincaré, obtemos

$$|\langle T, \varphi \rangle| \leq \int_{\mathcal{M}} |f + g| |\varphi| d\mathcal{M} \leq ||f + g||_{L^{2}(\mathcal{M})} ||\varphi||_{L^{2}(\mathcal{M})}$$

$$\leq K_{p} ||f + g||_{L^{2}(\mathcal{M})} ||\nabla \varphi||_{L^{2}(\mathcal{M})} = K_{p} ||f + g||_{L^{2}(\mathcal{M})} ||\varphi||_{V}$$

Está claro, que T é linear e b é bilinear. Então pelo Lema de Lax-Milgram, existe uma única $u \in V$ tal que

$$b(u,\varphi) = \langle T, \varphi \rangle, \, \forall \varphi \in V$$

o que mostra nossa afirmação.

Passando à $\mathcal{D}(\mathcal{M})$, temos

$$\langle u, \varphi \rangle + \langle -\Delta u, \varphi \rangle = \langle f + g, \varphi \rangle, \, \forall \varphi \in \mathcal{D}(\mathcal{M})$$

e portanto $u - \Delta u = f + g$ em $\mathcal{D}'(\mathcal{M})$.

Como $f+g\in L^2(\mathcal{M})$ e $u\in V$, temos pela equação acima, que $\Delta u\in L^2(\mathcal{M})$, então por um resultado de regularidade elíptica da referencia [15], $u\in V\cap H^2(\mathcal{M})$. Logo $v=u-f\in V$.

Então existe uma única $U=\begin{pmatrix}u\\v\end{pmatrix}\in V\cap H^2(\mathcal{M})\times V=D(A)$, que satisfaz (2.137), ou seja, (I+A)U=F. Portanto, A é maximal.

Mostraremos agora que, F é localmente Lipschitz, onde

$$F: \ H \longrightarrow H$$

$$U \longmapsto F(U) = \left(\begin{array}{c} 0 \\ a(x)g(v) \end{array} \right).$$

Antes porém, note que F está bem definida. Com efeito,

$$\int_{\mathcal{M}} |a(x)g(v)|^2 d\mathcal{M} \leq K^2 ||a||_{L^{\infty}(\mathcal{M})}^2 \int_{\mathcal{M}} |v|^2 d\mathcal{M} < +\infty.$$

Agora sim, mostraremos que F é localmente Lipschitz, isto é,

$$||F(u,v) - F(\overline{u},\overline{v})||_H \le L_{M_B}||(u,v) - (\overline{u},\overline{v})||_H$$

para todo $(u, v), (\overline{u}, \overline{v}) \in B_{H,R}(0)$, (onde $B_{H,R}(0)$ é a bola de raio R > 0 no espaço H). De fato, de (2.135) resulta

$$\begin{split} \|F(u,v) - F(\overline{u},\overline{v})\|_{H}^{2} &= \|(0,a(x)g(v)) - (0,a(x)g(\overline{v}))\|_{H}^{2} \\ &= \|(0,a(x)(g(v) - g(\overline{v}))\|_{H}^{2} \\ &\leq \|a\|_{L^{\infty}(\mathcal{M})}^{2}K^{2} \int_{\mathcal{M}} |v - \overline{v}|^{2}d\mathcal{M} \\ &\leq \|a\|_{L^{\infty}(\mathcal{M})}^{2}K^{2} \Big\{ \|v - \overline{v}\|_{L^{2}(\mathcal{M})}^{2} + \|u - \overline{u}\|_{V}^{2} \Big\} \\ &= \|a\|_{L^{\infty}(\mathcal{M})}^{2}K^{2} \|(u,v) - (\overline{u},\overline{v})\|_{H}^{2} \end{split}$$

Portanto, estamos nas hipóteses do teorema (2.3), o que implica que U é solução de (2.136) e

$$U = \begin{pmatrix} u \\ u_t \end{pmatrix} \in C([0, T_{\text{max}}); (V \cap H^2(\mathcal{M})) \times V) \cap C^1([0, T_{\text{max}}); V \times L^2(\mathcal{M}))$$

ou ainda

$$u \in C([0, T_{\text{max}}); (V \cap H^2(\mathcal{M}))) \cap C^1([0, T_{\text{max}}); V)$$

o que prova a existência de soluções regulares de (2.134) em $[0, T_{\text{max}})$.

Se
$$\begin{pmatrix} u^0 \\ u^1 \end{pmatrix} \in H$$
, então a solução é generalizada em $[0, T_{\text{max}})$, ou seja

$$\begin{pmatrix} u \\ u_t \end{pmatrix} \in C([0, T_{\text{max}}); (V \times L^2(\mathcal{M})))$$

o que implica

$$u \in C([0, T_{\text{max}}); V) \cap C^1([0, T_{\text{max}}); L^2(\mathcal{M}))$$

2.4.2 Extensão da solução de zero ao infinito

Para obtermos soluções globais de (2.134), precisamos estender nossa solução obtida anteriormente ao infinito.

De fato, sabemos que

$$U = \begin{pmatrix} u \\ u_t \end{pmatrix} \in C([0, T_{\max}); (V \cap H^2(\mathcal{M})) \times V) \cap C^1([0, T_{\max}); V \times L^2(\mathcal{M})).$$

Então

$$u \in C([0, T_{\text{max}}); (V \cap H^2(\mathcal{M}))) \cap C^1([0, T_{\text{max}}); V)$$

 $u_t \in C([0, T_{\text{max}}); V) \cap C^1([0, T_{\text{max}}); L^2(\mathcal{M}))).$

Pelo teorema 2.3, temos que $T_{\max} = \infty$ ou se $T_{\max} < \infty \Longrightarrow \lim_{t \to T_{\max}} \|u(t)\|_H = \infty$ se $t < T_{\max}$.

Queremos provar que $T_{\text{max}} = \infty$. Suponhamos por contradição que $T_{\text{max}} < \infty$. Por outro lado, compondo a primeira equação de (2.134) com u_t , teremos para soluções regulares

$$(u_{tt}, u_t) + (\nabla u, \nabla u_t) + (a(x)g(u_t), u_t) = 0$$

ou ainda

$$\frac{1}{2}\frac{d}{dt}\left\{\|u_t(t)\|_{L^2(\mathcal{M})}^2 + \|\nabla u(t)\|_{L^2(\mathcal{M})}^2\right\} = -\int_{\mathcal{M}} a(x)g(u_t(t))u_t(t)d\mathcal{M} \le 0, \ \forall t \in [0, T_{\text{max}})$$

integrando de 0 a $t, t \in [0, T]$, teremos

$$\frac{1}{2}\|u_t(t)\|_{L^2(\mathcal{M})}^2 + \|\nabla u(t)\|_{L^2(\mathcal{M})}^2 \le \frac{1}{2}\|u^1\|_{L^2(\mathcal{M})}^2 + \|\nabla u^0\|_{L^2(\mathcal{M})}^2$$

daí resulta que $||u(t)||_H^2 = ||u(t)||_V^2 + ||u_t(t)||_{L^2(\mathcal{M})}^2 < +\infty$, ou seja $||u(t)||_H < +\infty$, o que é uma contradição. Portanto, as soluções regulares clássicas existem em $[0, \infty)$.

2.4.3 Unicidade da Solução Regular

A unicidade pode ser obtida de forma análoga ao feito no caso anterior na subseção **2.3.4**.

2.4.4 Existência e unicidade de Soluções Fracas como Limite de Soluções Regulares

Vamos provar a existência de soluções fracas para nosso problema, como sendo limite de soluções regulares.

De fato, seja $\{u^0,u^1\} \in V \times L^2(\mathcal{M})$. Então, existe uma solução generalizada em $\left[0,T_{\max}\right)$ dada pela fórmula $U(t)=S(t)U^0+\int_0^t S(t-s)F(U(s))ds$.

Como $\overline{D(A)}=H$ existe $\{u_{\mu}^{0},u_{\mu}^{1}\}\in D(A)$ tal que

$$\{u_{\mu}^{0}, u_{\mu}^{1}\} \longrightarrow \{u^{0}, u^{1}\}$$
, quando $\mu \to \infty$

Logo, para cada $\mu \in \mathbb{N}$ temos

$$u_{\mu} \in C([0,T]; V \cap H^{2}(\mathcal{M})), u'_{\mu} \in C([0,T]; V) \text{ e } u''_{\mu} \in ([0,T]; L^{2}(\mathcal{M}))$$

e satisfaz

$$\begin{cases} u''_{\mu} - \Delta u_{\mu} + a(x)g(u'_{\mu}) = 0 & \text{em } \mathcal{M} \times (0, +\infty) \\ u_{\mu}(0) = u^{0}_{\mu} ; u'_{\mu}(0) = u^{1}_{\mu} \end{cases}$$
 (2.139)

compondo com u'_{μ} e integrando de 0 a $t, t \in [0, T]$, obtemos

$$\frac{1}{2} \|u'_{\mu}(t)\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2} \|\nabla u_{\mu}(t)\|_{L^{2}(\mathcal{M})}^{2} + \int_{0}^{t} \int_{\mathcal{M}} a(x)g(u'_{\mu}(s))u'_{\mu}(s)d\mathcal{M}ds = (2.140)$$

$$\frac{1}{2} \|u_{\mu}^{1}\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2} \|\nabla u_{\mu}^{0}\|_{L^{2}(\mathcal{M})}^{2} \le L \quad \forall t \in [0, T], \quad e \ \forall \mu \in \mathbb{N}$$
(2.141)

Fazendo $z_{\sigma,\mu}=u_{\sigma}-u_{\mu},$ vem que

$$z''_{\sigma,\mu} - \Delta z_{\sigma,\mu} + a(x)g(u'_{\sigma}) - a(x)g(u'_{\mu}) = 0$$

compondo com $z'_{\sigma,\mu}$, e notando que $z_{\sigma,\mu}(t), z'_{\sigma,\mu}(t), z''_{\sigma,\mu}(t)$ e $\Delta z_{\sigma,\mu}(t) \in L^2(\mathcal{M})$, obtemos

$$\frac{1}{2}\frac{d}{dt}\left\{\|z'_{\sigma,\mu}(t)\|_{L^{2}(\mathcal{M})}^{2} + \|\nabla z_{\sigma,\mu}(t)\|_{L^{2}(\mathcal{M})}^{2}\right\} \leq -\int_{\mathcal{M}} a(x)(g(u_{\sigma}) - g(u_{\mu}))(u_{\sigma} - u_{\mu})d\mathcal{M}$$

integrando de 0 a $t, t \in [0, T]$

$$\frac{1}{2}\|z_{\sigma,\mu}'(t)\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla z_{\sigma,\mu}(t)\|_{L^2(\mathcal{M})}^2 \le \frac{1}{2}\|z_{\sigma,\mu}^1\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla z_{\sigma,\mu}^0\|_{L^2(\mathcal{M})}^2$$

Tomando-se o máximo, temos

$$\begin{aligned} \max_{t \in [0,T]} \|z_{\sigma,\mu}'(t)\|_{L^{2}(\mathcal{M})}^{2} &= \max_{t \in [0,T]} \|u_{\sigma}'(t) - u_{\mu}'(t)\|_{L^{2}(\mathcal{M})}^{2} \\ &\leq \frac{1}{2} \|z_{\sigma,\mu}^{1}\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2} \|\nabla z_{\sigma,\mu}^{0}\|_{L^{2}(\mathcal{M})}^{2} \stackrel{\sigma,\mu \to \infty}{\longrightarrow} 0 \end{aligned}$$

portanto

$$\|u'_{\sigma} - u'_{\mu}\|_{C([0,T];L^2(\mathcal{M}))} \stackrel{\sigma,\mu \to \infty}{\longrightarrow} 0$$

logo, $\{u'_{\mu}\}$ é de Cauchy em $C([0,T];L^2(\mathcal{M}))$

De maneira análoga, temos

$$||u_{\sigma} - u_{\mu}||_{C([0,T];V)} = \max_{t \in [0,T]} ||u_{\sigma}(t) - u_{\mu}(t)||_{V}^{2}$$

$$\leq \max_{t \in [0,T]} ||\nabla u_{\sigma}(t) - \nabla u_{\mu}(t)||_{L^{2}(\mathcal{M})}^{2}$$

$$\leq \frac{1}{2} \left\{ ||z_{\sigma,\mu}^{1}||_{L^{2}(\mathcal{M})}^{2} + ||\nabla z_{\sigma,\mu}^{0}||_{L^{2}(\mathcal{M})}^{2} \right\} \xrightarrow{\sigma,\mu \to \infty} 0$$

o que mostra que $\{u_{\mu}\}$ é de Cauchy em C([0,T];V). Sendo os espaços $C([0,T];L^2(\mathcal{M}))$ e C([0,T];V) completos, resulta que

$$u_{\mu} \to u \text{ em } C([0,T];V) \hookrightarrow L^{2}(0,T;V) \hookrightarrow \mathcal{D}'(0,T;V)$$
 (2.142)

$$u'_{\mu} \to \bar{u} \text{ em } C([0,T];L^2(\mathcal{M})) \hookrightarrow L^2(0,T;L^2(\mathcal{M})) \hookrightarrow \mathcal{D}'(0,T;L^2(\mathcal{M})) \ (2.143)$$

De (2.142) temos que $u'_{\mu} \to u'$ em $\mathcal{D}'(0,T;L^2(\mathcal{M}))$ e de (2.143) temos que $u'_{\mu} \to \bar{u}$ em $\mathcal{D}'(0,T;L^2(\mathcal{M}))$. Pela unicidade do limite em \mathcal{D}' , temos que $u' = \bar{u}$ em $\mathcal{D}'(0,T;L^2(\mathcal{M}))$.

Fazendo o produto escalar, de (2.139) com $v \in V$ e integrando em \mathcal{M} e em seguida multiplicando por uma função teste $\theta \in \mathcal{D}(0,T)$, obtemos

$$\int_0^T (u''_{\mu}(t), v)\theta(t)dt + \int_0^T (-\Delta u_{\mu}(t), v)\theta(t)dt + \int_0^T (a(x)g(u'_{\mu}(t)), v)\theta(t)dt = 0$$

Integrando por partes, na primeira integral, vem que

$$-\int_{0}^{T} (u'_{\mu}(t), v)\theta'(t)dt + \int_{0}^{T} (-\Delta u_{\mu}(t), v)\theta(t)dt + \int_{0}^{T} (a(x)g(u'_{\mu}(t)), v)\theta(t)dt = 0$$

e ainda, pelo Teorema de Green, temos

$$-\int_{0}^{T} (u'_{\mu}(t), v)\theta'(t)dt + \int_{0}^{T} (\nabla u_{\mu}(t), \nabla v)\theta(t)dt + \int_{0}^{T} (a(x)g(u'_{\mu}(t)), v)\theta(t)dt = 0$$

$$\forall v \in V.$$
(2.144)

Notemos agora, que

$$\{u_{\mu}\}$$
 é limitada em $L^2(0,T;V)$
$$\{u'_{\mu}\}$$
 é limitada em $L^2(0,T;L^2(\mathcal{M}))$.

Logo,

$$u_{\mu} \rightharpoonup u \text{ em } L^{2}(0, T; V)$$

 $u'_{\mu} \rightharpoonup \xi \text{ em } L^{2}(0, T; L^{2}(\mathcal{M})).$

Mas, sabemos que $u'_{\mu} \rightharpoonup u'$ em $\mathcal{D}'(0,T;L^2(\mathcal{M}))$. Pela unicidade do limite, temos que $u' = \xi$ em $\mathcal{D}'(0,T;L^2(\mathcal{M}))$. Então,

$$\int_{0}^{T} \langle u'_{\mu}(t), v \rangle \theta'(t) dt \longrightarrow \int_{0}^{T} \langle u'(t), v \rangle \theta'(t) dt, \qquad (2.145)$$

$$\int_{0}^{T} \langle \nabla u_{\mu}(t), \nabla v \rangle \theta(t) dt \longrightarrow \int_{0}^{T} \langle \nabla u(t), \nabla v \rangle \theta(t) dt \qquad (2.146)$$

e temos também que

$$g(u'_{\mu}) \longrightarrow \chi \text{ em } L^2(0,T;L^2(\mathcal{M}))$$

Mas já foi mostrado neste capítulo, que $\chi = g(u')$, então

$$\int_0^T \langle a(x)g(u'_{\mu}(t)), v \rangle \theta(t)dt \longrightarrow \int_0^T \langle a(x)g(u'(t)), v \rangle \theta(t)dt \qquad (2.147)$$

De (2.145), (2.147) e (2.146), na passagem ao limite em (2.144) temos

$$-\int_0^T (u'(t), v)\theta'(t)dt + \int_0^T (\nabla u(t), \nabla v)\theta(t)dt + \int_0^T (a(x)g(u'(t)), v)\theta(t)dt = 0$$

 $\forall v \in V$. ou ainda,

$$\left\langle \frac{d}{dt}(u'(t),v),\theta(t)\right\rangle + \left\langle (\nabla u(t),\nabla v),\theta(t)\right\rangle + \left\langle (a(x)g(u'(t)),v),\theta(t)\right\rangle = 0$$

para toda $\theta \in \mathcal{D}(0,T)$.

Portanto

$$\frac{d}{dt}(u'(t), v) + (\nabla u(t), \nabla v) + (a(x)g(u'(t)), v) = 0 \quad \text{em } \mathcal{D}'(0, T)$$

e para todo $v \in V$.

De (2.140), da convergência dos dados iniciais e das convergências (2.142) e (2.143), obtemos

$$\frac{1}{2}\|u'(t)\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2}\|\nabla u(t)\|_{L^{2}(\mathcal{M})}^{2} + \int_{0}^{t} \int_{\mathcal{M}} a(x)g(u'(s))u'(s)d\mathcal{M}ds = \frac{1}{2}\|u^{1}\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2}\|\nabla u^{0}\|_{L^{2}(\mathcal{M})}^{2} \le L \quad \forall t \in [0,T], \quad e \ \forall \mu \in \mathbb{N}$$

que é justamente a identidade de energia, para soluções fracas que são limites de soluções regulares. Portanto, podemos estender as soluções fracas a todo intervalo $[0, +\infty)$.

Unicidade de Soluções Fracas

A unicidade obtém-se da identidade da energia provada no Apêndice 2.5.

2.5 Apêndice

2.5.1 Identidade da Energia

Sejam V e H espaços de Hilbert tais que $V \hookrightarrow H$. Representaremos por ((.,.)) e (.,.), os produtos internos em V e H, respectivamente. Para cada $u \in V$, a função

$$v \longmapsto ((u,v))$$

é linear e contínua. Portanto existe um único operador $A:V\to V'$, tal que $\langle Au,v\rangle=((u,v)),\,\forall v\in V'.$

Prova-se que a função

$$u \longmapsto Au$$

de V em V' é um isomorfismo isométrico. Dado $\{u^0,u^1\}\in V\times H$ e $f\in L^2(0,T;H),$ $\exists !\, u:(0,T)\longrightarrow V$ tal que:

$$\begin{cases} u'' + Au = f \\ u(0) = u^0, u'(0) = u^1 \end{cases}$$

na classe $u \in L^{\infty}(0,T;V), u' \in L^{\infty}(0,T;H)$ e $u'' \in L^{\infty}(0,T;V')$

De fato, considere acima $H = L^2(\mathcal{M})$ e V um espaço de Hilbert com imersão compacta em $L^2(\mathcal{M})$, que também é denso no mesmo. Pela teoria espectral, $A = -\Delta$ e existe uma base $(w_j)_{j\in\mathbb{N}}$ ortonormal completa em $L^2(\mathcal{M})$ e ortogonal em V. Também considerando $V \cap L^2(\mathcal{M})$, esta mesma base é completa e ortogonal neste espaço. Assim, denotemos por $V_m = [w_1, \dots, w_m]$ o subespaço gerado pelos m primeiros vetores da base (w_i) . Consideremos em V_m o seguinte problema aproximado

$$u_m(t) \in V_m \Leftrightarrow u_m(t) = \sum_{j=1}^m g_{jm}(t)w_j$$

tal que

$$\begin{cases}
(u''_m(t), v) + (-\Delta u_m(t), v) = (f(t), v) & para \ todo \ v \in V_m \\
u_m(0) = u_{0m} \to u^0 \quad em \quad V \\
u'_m(0) = u_{1m} \to u^1 \quad em \quad L^2(\mathcal{M})
\end{cases}$$
(2.148)

usando o fato que $(-\Delta u, v) = ((u, v)) = (\nabla u, \nabla v)$, temos ainda

$$\begin{cases}
(u''_m(t), v) + (\nabla u_m(t), \nabla v) = (f(t), v) & para \ todo \ v \in V_m \\
u_m(0) = u_{0m} \to u^0 & em \ V \\
u'_m(0) = u_{1m} \to u^1 & em \ L^2(\mathcal{M})
\end{cases}$$
(2.149)

Substituindo $u_m(t)$ em (2.149) com $v = w_j$, analogamente ao feito nos problemas anteriores, obtemos a seguinte forma matricial

$$\underbrace{\begin{bmatrix} g_{1m}''(t) \\ g_{2m}''(t) \\ \vdots \\ g_{mm}''(t) \end{bmatrix}}_{z''(t)} + \underbrace{\begin{bmatrix} (\nabla w_1, \nabla w_1) & (\nabla w_2, \nabla w_1) & \cdots & (\nabla w_m, \nabla w_1) \\ (\nabla w_1, \nabla w_2) & (\nabla w_2, \nabla w_2) & \cdots & (\nabla w_m, \nabla w_2) \\ \vdots & \vdots & \ddots & \vdots \\ (\nabla w_1, \nabla w_m) & (\nabla w_2, \nabla w_m) & \cdots & (\nabla w_m, \nabla w_m) \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} g_{1m}(t) \\ g_{2m}(t) \\ \vdots \\ g_{mm}(t) \end{bmatrix}}_{z(t)}$$

$$= \underbrace{\begin{bmatrix} (f(t), w_1) \\ (f(t), w_2) \\ \vdots \\ (f(t), w_m) \end{bmatrix}}_{z(t)}$$

nosso problema agora consiste em resolver o seguinte sistema de equações diferenciais ordinárias

$$\begin{cases} z''(t) + Az(t) + G(t) = 0\\ z(0) = z_0, \quad z'(0) = z_1 \end{cases}$$
 (2.150)

Definamos:

$$Y_1(t) = z(t)$$

$$Y_2(t) = z'(t)$$

$$Y(t) = \left[\begin{array}{c} Y_1(t) \\ Y_2(t) \end{array} \right]$$

Logo temos

$$Y'(t) = \begin{bmatrix} Y_1'(t) \\ Y_2'(t) \end{bmatrix} = \begin{bmatrix} z'(t) \\ z''(t) \end{bmatrix} = \begin{bmatrix} Y_2(t) \\ -AY_1(t) + G(t) \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ G(t) \end{bmatrix} + \begin{bmatrix} 0 & I \\ -A & -0 \end{bmatrix} \begin{bmatrix} Y_1(t) \\ Y_2(t) \end{bmatrix}$$

Donde temos o seguinte problema de valor inicial

$$\begin{cases}
Y'(t) = \begin{bmatrix} 0 \\ G(t) \end{bmatrix} + \begin{bmatrix} 0 & I \\ -A & -0 \end{bmatrix} \begin{bmatrix} Y_1(t) \\ Y_2(t) \end{bmatrix} \\
Y(0) = Y^0
\end{cases} (2.151)$$

Provaremos que o problema acima possui solução local, utilizando o Teorema de Carathéodory. Consideremos a aplicação:

$$F: [0,T] \times \mathbb{R}^{2m} \longrightarrow \mathbb{R}^{2m}$$

$$(t,y) \longmapsto F(t,y) = \begin{bmatrix} 0 \\ G(t) \end{bmatrix} + My$$

onde
$$M = \begin{bmatrix} 0 & I \\ -A & -0 \end{bmatrix}$$
 e $y = Y = (\xi_1, \dots, \xi_m, \xi_{m+1}, \dots, \xi_{2m})$

- (i) Seja $y \in \mathbb{R}^{2m}$ fixado. Como função de t F é contínua uma vez que esta não depende de t (F é constante).
- (ii) Para cada $t \in [0, T]$, F é contínua como função de y. De fato,notemos que a função $y \mapsto My$ é linear, conseqüentemente contínua.
- (iii) Por fim, considerando $D = [-T, T] \times B_b$ onde $B_b = \{x \in \mathbb{R}^{2m} ; Y_{0m} \in B_b \in |x| \le b, b > 0\}$, temos

$$||F(t,y)||_{\mathbb{R}^{2m}} \le ||G(t)||_{\mathbb{R}^m} + ||My||_{\mathbb{R}^{2m}} \le c + ||M||b$$

Portanto das considerações acima, segue-se pelo Teorema de Carathéodory que existe uma solução Y(t) do problema de valor inicial

$$\begin{cases} Y'(t) = F(t, y) \\ Y(0) = Y^0 \end{cases}$$

em algum intervalo $[0, t_m)$, com $t_m > 0$. Além disso, Y(t) é absolutamente contínua e portanto, diferenciável quase sempre em $[0, t_m)$. Resulta deste fato que z(t) e z'(t), são absolutamente contínuas e conseqüentemente, z''(t) existe em quase todo ponto do intervalo $[0, t_m)$.

Estimativas a Priori

Multiplicando-se (2.148) por $g'_m(t)$ e somando j de 1 até m, obtemos

$$(u''_m(t), u'_m(t)) + (\nabla u_m(t), \nabla u'_m(t)) = (f(t), u'_m(t))$$
(2.152)

sendo g_{jm} e g'_{jm} absolutamente contínuas, vem da identidade acima que

$$(u''_m(t), u'_m(t)) \in L^1(0, t_m)$$
(2.153)

note que de (2.152), vem que

$$\frac{1}{2}\frac{d}{dt}\|u_m'(t)\|_2^2 + \frac{1}{2}\frac{d}{dt}\|\nabla u_m(t)\|_2^2 = (f(t), u_m'(t)) \text{ para quase todo } t \in [0, t_m).$$

Integrando de 0 a $t, t \in (0, t_m)$

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 = +||u'_m(0)||_2^2 + ||\nabla u_m(0)||_2^2 + \int_0^t (f(s), u'_m(s))ds \qquad (2.154)$$

usando a desigualdade de Cauchy-Schwarz, e o fato que $2ab \leq a^2 + b^2$, da identidade acima, obtemos

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 \le +||u'_m(0)||_2^2 + ||\nabla u_m(0)||_2^2 + \int_0^t ||f(s)||_2^2 ds + \int_0^t ||u'_m(s)||_2^2 ds$$

Agora graças à convergência dos dados iniciais em (2.148), existe uma constante $C_0 > 0$ tal que

$$||u'_m(0)||_2^2 + ||\nabla u_m(0)||_2^2 \le C_0$$

Assim obtemos da identidade anterior

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 \le C_0 + ||f(s)||_{L^2(0,T;L^2(\mathcal{M}))} + \int_0^t \left\{ ||u'_m(s)||_2^2 + ||\nabla u_m(s)||_2^2 \right\} ds$$

ou ainda

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 \le C_1 + \int_0^t \left\{ ||u'_m(s)||_2^2 + ||\nabla u_m(s)||_2^2 \right\} ds$$

Em virtude da desigualdade de Gronwall, existe C>0 (independente de t e m) tal que

$$||u'_m(t)||_2^2 + ||\nabla u_m(t)||_2^2 \le C$$
, $\forall t \in [0, t_m), \forall m \in \mathbb{N}$

Portanto do fato acima, podemos estender u_m à todo intervalo [0,T] e além disso, também temos

$$(u_m)$$
 é limitada em $L^{\infty}(0,T;V)$ (2.155)

$$(u'_m)$$
 é limitada em $L^{\infty}(0,T;L^2(\mathcal{M}))$ (2.156)

De (2.159) e (2.156), obtemos a existência de uma subsequência (u_{ν}) de (u_m) tal que

$$(u_{\nu}) \stackrel{\star}{\rightharpoonup} u \quad \text{em} \quad L^{\infty}(0, T; V)$$
 (2.157)

$$(u'_{\nu}) \stackrel{\star}{\rightharpoonup} u' \quad \text{em} \quad L^{\infty}(0, T; L^2(\mathcal{M})).$$
 (2.158)

Passagem ao Limite

Como $V \stackrel{c}{\hookrightarrow} L^2(\mathcal{M})$, definindo

$$W = \{ u \in L^2(0, T; V) ; u' \in L^2(0, T; L^2(\mathcal{M})) \}$$

munido da topologia $||u||_W = ||u||_{L^2(0,T;V)} + ||u'||_{L^2(0,T;L^2(\mathcal{M}))}$ resulta de (2.159) e (2.156) que

$$(u_{\nu})$$
 é limitada em W . (2.159)

Logo pelo Teorema de Aubin-Lions, existe uma subsequência (u_{μ}) de (u_{ν}) tal que

$$u_{\mu} \longrightarrow u \text{ forte em } L^{2}(0, T; L^{2}(\mathcal{M})).$$
 (2.160)

Seja $j \in \mathbb{N}$ e $\mu \in \mathbb{N}$ tal que $\mu \geq j$ e consideremos $\theta \in \mathcal{D}(0,T)$. Multiplicando-se (2.148) por θ e integrando-se em [0,T], obtemos

$$\int_0^T (u_{\nu}'', w_j) \theta(t) dt + \int_0^T (\nabla u_{\mu}(t), \nabla w_j) \theta(t) dt = \int_0^T (f(t), w_j) \theta(t) dt$$

o que nos dá

$$-\int_0^T (u_{\nu}', w_j)\theta'(t)dt + \int_0^T (\nabla u_{\mu}(t), \nabla w_j)\theta(t)dt = \int_0^T (f(t), w_j)\theta(t)dt$$

Agora de (2.157) e (2.158), temos

$$\int_0^T \langle u_{\mu}(t), \xi(t) \rangle_{V,V'} dt \longrightarrow \int_0^T \langle u(t), \xi(t) \rangle_{V,V'} dt \qquad (2.161)$$

$$\int_0^T \langle u_{\mu}(t), \eta(t) \rangle_{L^2(\mathcal{M}), [L^2(\mathcal{M})]'} dt \longrightarrow \int_0^T \langle u(t), \eta(t) \rangle_{L^2(\mathcal{M}), [L^2(\mathcal{M})]'} dt \qquad (2.162)$$

 $\forall \xi \in L^1(0,T;L^2(\mathcal{M})) \text{ e } \forall \eta \in L^1(0,T;[L^2(\mathcal{M})]') \text{ respectivamente}.$

tomando-se em particular $\xi = -\Delta w_j \theta$ e $\eta = w_j \theta'$, obtemos de (2.161) e (2.162)

$$\int_0^T \langle u_{\mu}(t), -\Delta w_j \rangle_{V,V'} \theta(t) dt \longrightarrow \int_0^T \langle u(t), -\Delta w_j \rangle_{V,V'} \theta(t) dt \qquad (2.163)$$

ou seja

$$\int_0^T (\nabla u_\mu(t), \nabla w_j) \theta(t) dt \longrightarrow \int_0^T (\nabla u_i(t), \nabla w_j) \theta(t) dt \qquad (2.164)$$

e

$$\int_0^T (u'_{\mu}(t), w_j) \theta'(t) dt \longrightarrow \int_0^T (u'(t), w_j) \theta'(t) dt. \qquad (2.165)$$

Logo de (2.164) e (2.165), obtemos

$$\int_{0}^{T} (u'(t), w_{j})\theta'(t)dt + \int_{0}^{T} (\nabla u(t), \nabla w_{j})\theta(t)dt = \int_{0}^{T} (f(t), w_{j})\theta(t)dt \qquad (2.166)$$

pela completude da base (w_j) em V, a igualdade acima permanece válida $\forall v \in V$, isto é,

$$\int_0^T (u'(t), v)\theta'(t)dt + \int_0^T (\nabla u(t), \nabla v)\theta(t)dt = \int_0^T (f(t), v)\theta(t)dt$$
 (2.167)

ou ainda

$$\left\langle \frac{d}{dt}(u'(t), v), \theta \right\rangle + \left\langle (\nabla u(t), \nabla v), \theta \right\rangle = \left\langle (f(t), v), \theta \right\rangle, \forall \theta \in \mathcal{D}(0, T)$$

donde concluímos que

$$\frac{d}{dt}(u'(t), v) + (\nabla u(t), \nabla v) = (f(t), v) \quad \text{em } \mathcal{D}'(0, T).$$
(2.168)

Identificando $L^2(\mathcal{M})$ com seu dual, obtemos de (2.167)

$$\left\langle -\int_0^T u'(t)\theta'(t)dt, v \right\rangle + \left\langle \int_0^T -\Delta u(t)\theta(t)dt, v \right\rangle = \left\langle -\int_0^T f(t)\theta(t)dt, v \right\rangle$$

daí vem que

$$u'' - \Delta u = f \quad \text{em } \mathcal{D}'(0, T; V')$$
(2.169)

contudo $f\in L^2(0,T;L^2(\mathcal{M}))\subset L^2(0,T;V')$ e $\Delta u\in L^\infty(0,T;V')$, portanto de (2.169) vem que $u''\in L^2(0,T;V')$ então

$$u'' - \Delta u = f \quad \text{em } L^2(0, T; V')$$

o que prova a existência.

Condições Iniciais

Notemos inicialmente que de (2.157), (2.158) e (2.169), temos $u \in C([0,T];L^2(\mathcal{M})) \cap C_s(0,T;V)$ e $u' \in C([0,T];V') \cap C_s(0,T;L^2(\mathcal{M}))$, tendo sentido pois falarmos em u(0), u(T), u'(0) e u'(T).

Provaremos que $u(0) = u^0$

Com efeito, seja $\theta \in C^1([0,T])$ tal que $\theta(0)=1$ e $\theta(T)=0$. De (2.158) vem que, se $\nu>j$ (j arbitrário porém fixado)

$$\int_0^T (u'_{\nu}(t), w_j)\theta(t)dt \longrightarrow \int_0^T (u'(t), w_j)\theta(t)dt$$

integrando-se por partes

$$-(u_{\nu}(0), w_{j}) - \int_{0}^{T} (u_{\nu}(t), w_{j})\theta'(t)dt \longrightarrow -(u(0), w_{j}) - \int_{0}^{T} (u(t), w_{j})\theta'(t)dt$$

De (2.157) resulta que

$$\int_0^T (u_{\nu}(t), w_j) \theta'(t) dt \longrightarrow \int_0^T (u(t), w_j) \theta'(t) dt$$

o que implica

$$(u_{\nu}(0), w_{i}) \longrightarrow (u(0), w_{i}) \quad , \forall j \in \mathbb{M}$$

daí

$$u_{\nu}(0) \rightharpoonup u(0) \quad \text{em } L^{2}(\mathcal{M})$$

Por outro lado, de (2.148)

$$u_{\nu}(0) \rightharpoonup u^0 \quad \text{em } L^2(\mathcal{M})$$

devido a unicidade do limite fraco, obtemos $u(0) = u^0$.

Provaremos agora $u'(0) = u^1$

Seja $\theta \in C^1([0,T])$ tal que $\theta(0)=1$ e $\theta(T)=0$. Consideremos $\mu>j$ (j arbitrário porém fixado). De (2.148), obtemos

$$\int_0^T (u_{\mu}''(t), w_j)\theta(t)dt + \int_0^T (\nabla u_{\mu}(t), \nabla w_j)\theta(t)dt = \int_0^T (f(t), w_j)\theta(t)dt$$

integrando por partes, temos

$$-(u'_{\mu}(0), w_j) - \int_0^T (u'_{\mu}(t), w_j)\theta'(t)dt + \int_0^T (\nabla u_{\mu}(t), \nabla w_j)\theta(t)dt = \int_0^T (f(t), w_j)\theta(t)dt$$

tomando-se o limite e pela totalidade dos $w_{j's}$ em $V \cap L^2(\mathcal{M})$, temos

$$-(u^1,v) - \int_0^T (u'(t),v)\theta'(t)dt + \int_0^T (\nabla u(t),\nabla v)\theta(t)dt = \int_0^T (f(t),v)\theta(t)dt$$

integrando por partes novamente, obtemos

$$-(u^{1},v)+(u'(0),v)+\int_{0}^{T}\langle u''(t),v\rangle\theta(t)dt+\int_{0}^{T}(\nabla u(t),\nabla v)\theta(t)dt=\int_{0}^{T}(f(t),v)\theta(t)dt \quad (2.170)$$

onde $\langle ., . \rangle$ designa a dualidade V', V

Agora, como

$$\langle u''(t), v \rangle = \frac{d}{dt}(u'(t), v) \in L^2(0, T)$$
 (2.171)

resulta de (2.168), (2.170) e (2.171) que

$$(u^1, v) = (u'(0), v); \quad \forall v \in V$$

donde concluímos o desejado.

Fixemos $0 < s_0 < t_0 < T$ e $n_0 \in \mathbb{N}$ tal que $n_0 > \max \left\{ \frac{1}{s_0}, \frac{1}{T - t_0} \right\}$. Então $\forall n \geq n_0$, definamos:

$$\theta_n(\xi) = \begin{cases} 0 & ; & \text{se } 0 \le \xi \le s_0 - \frac{1}{n} \\ 1 + n(\xi - s_0) & ; & \text{se } s_0 - \frac{1}{n} \le \xi \le s_0 \\ 1 & ; & \text{se } s_0 \le \xi \le t_0 \\ 1 - n(\xi - t_0) & ; & \text{se } t_0 \le \xi \le t_0 + \frac{1}{n} \\ 0 & ; & \text{se } t_0 + \frac{1}{n} \le \xi \le T \end{cases}$$

$$(2.172)$$

cuja a derivada no sentido das distribuições vem dada por:

$$\theta'_n(\xi) = \begin{cases} 0 & ; & \text{se } 0 \le \xi < s_0 - \frac{1}{n} \\ n & ; & \text{se } s_0 - \frac{1}{n} < \xi < s_0 \\ 0 & ; & \text{se } s_0 < \xi < t_0 \\ -n & ; & \text{se } t_0 < \xi < t_0 + \frac{1}{n} \\ 0 & ; & \text{se } t_0 + \frac{1}{n} < \xi \le T \end{cases}$$

$$(2.173)$$

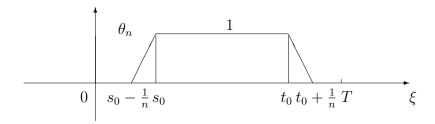


Figura 2.1: Função θ_n

Seja $(\rho_k)_{k\in\mathbb{N}}$ uma sucessão regularizante par, isto é,

$$\rho_k(\xi) = \rho_k(-\xi), \quad \text{tal que } supp(\rho_k) \subset \left[-\frac{1}{k}, \frac{1}{k} \right]$$
(2.174)

Definamos:

$$\varphi_{nk} = \theta_n [(\theta_n u') * \rho_k * \rho_k]$$
(2.175)

onde a convolução é considerada em t. A função acima está bem definida, pois se $\tilde{\theta_n}$ e $\tilde{u'}$ são as extensões nulas fora de [0,T] de θ_n e u' respectivamente, então, $\forall t \in [0,T]$

$$\varphi_{nk}(t) = \tilde{\theta_n} \left[(\tilde{\theta_n} \tilde{u}') * \rho_k * \rho_k \right](t) = \tilde{\theta_n}(t) \int_{-\infty}^{+\infty} \tilde{\theta_n}(\xi) \tilde{u}'(\rho_k * \rho_k)(t - \xi) d\xi$$
$$= \theta_n(t) \int_0^T \theta_n(\xi) u'(\rho_k * \rho_k)(t - \xi) d\xi$$

onde a última igualdade decorre em virtude de $\theta_n(\xi) = 0, \forall \xi \in \mathbb{R} \setminus (0, T)$. Notemos que:

$$supp \left[(\theta_{n}u') * \rho_{k} * \rho_{k} \right] \subset supp(\theta_{n}u') + \left[-\frac{1}{k}, \frac{1}{k} \right] + \left[-\frac{1}{k}, \frac{1}{k} \right]$$

$$\subset supp(\theta_{n}) \cap supp(u') + \left[-\frac{2}{k}, \frac{2}{k} \right]$$

$$\subset supp(\theta_{n}) + \left[-\frac{2}{k}, \frac{2}{k} \right]$$

$$\subset \left[s_{0} - \frac{1}{n_{0}}, t_{0} + \frac{1}{n_{0}} \right] + \left[-\frac{2}{k}, \frac{2}{k} \right]$$

$$(2.176)$$

Se
$$x \in \left[s_0 - \frac{1}{n_0}, t_0 + \frac{1}{n_0}\right]$$
 e $y \in \left[-\frac{2}{k}, \frac{2}{k}\right]$ então
$$s_0 - \frac{1}{n_0} - \frac{2}{k} \le x + y \le t_0 + \frac{1}{n_0} + \frac{2}{k}$$
(2.177)

Suponhamos que

$$s_0 - \frac{1}{n_0} - \frac{2}{k} > 0 \quad e \quad t_0 + \frac{1}{n_0} + \frac{2}{k} < T$$
 (2.178)

Então para que isso ocorra devemos ter:

$$\frac{1}{k} < \frac{s_0}{2} - \frac{1}{2n_0} = \frac{n_0 s_0 - 1}{2n_0} \Longrightarrow k > \frac{2n_0}{n_0 s_0 - 1}$$

também

$$\frac{1}{k} < \frac{T}{2} - \frac{1}{2n_0} - \frac{t_0}{2} = \frac{Tn_0 - t_0n_0 - 1}{2n_0} \Longrightarrow k > \frac{2n_0}{Tn_0 - t_0n_0 - 1}$$

Logo para que (2.178) ocorra devemos ter

$$k > \max\left\{\frac{2n_0}{n_0s_0 - 1}, \frac{2n_0}{Tn_0 - t_0n_0 - 1}\right\} = k_0$$
 (2.179)

Donde de (2.177), vem que $x + y \in]0, T[$

ou seja,

$$\left[s_0 - \frac{1}{n_0}, t_0 + \frac{1}{n_0}\right] + \left[-\frac{2}{k}, \frac{2}{k}\right] \subset]0, T[$$

Assim para $k \ge k_0$ de (2.176) vem que

$$supp[(\theta_n u') * \rho_k * \rho_k] \subset]0, T[\tag{2.180}$$

De agora em diante consideraremos $(\rho_k)_{k\geq k_0}$ e $(\theta_n)_{n\geq n_0}$.

Por outro lado, para cada n, temos que $\theta_n, \theta'_n \in L^2(0,T)$. Logo $\theta_n \in H^1(0,T)$ e como $supp(\theta_n)$ é um compacto contido em]0,T[resulta que

$$\theta_n \in H^1(0,T) \subset C([0,T]). \tag{2.181}$$

Temos também

$$u \in W^{1,+\infty}(0,T;H) \subset H^1(0,T;H) \subset C([0,T]).$$
 (2.182)

De (2.181) e (2.182) resulta, pela regra de Leibniz que:

$$(u\theta_n)' = u'\theta_n + u\theta_n'$$

e desta última igualdade vem que:

$$(u'\theta_n) * \rho_k * \rho_k = (u\theta_n)' * \rho_k * \rho_k - (u\theta_n') * \rho_k * \rho_k$$
 (2.183)

Consideremos agora, a primeira expressão à direita da igualdade acima. Temos para todo $t \in [0, T]$:

$$[(u\theta_n)' * \rho_k * \rho_k](t) = \int_0^T (u\theta_n)'(\xi)(\rho_k * \rho_k)(t - \xi)d\xi = [(u\theta_n)(\xi)(\rho_k * \rho_k)(t - \xi)]_{\xi=0}^{\xi=T} - \int_0^T (u\theta_n)(\xi)(\rho_k * \rho_k)'(t - \xi)d\xi = \int_0^T (u\theta_n)(\xi)(\rho_k * \rho_k')(t - \xi)d\xi$$

ou seja,

$$(u\theta_n)' * \rho_k * \rho_k = (u\theta_n)(\xi) * \rho_k * \rho_k'$$
(2.184)

Substituindo-se (2.184) em (2.183), vem que

$$(u\theta_n)' * \rho_k * \rho_k = (u\theta_n) * \rho_k * \rho_k' - (u\theta_n') * \rho_k * \rho_k$$
(2.185)

Assim de (2.175) obtemos

$$\varphi_{nk} = \theta_n \big[(u'\theta_n) * \rho_k * \rho_k \big] = \theta_n \big[(u\theta_n) * \rho_k * \rho_k' - (u\theta_n') * \rho_k * \rho_k \big]$$

Esta última expressão nos diz que:

$$\varphi_{n,k} \in C_0^{\infty}(0,T;V)$$

tendo sentido pois compor a equação:

$$u'' + Au = f \quad \text{em } L^2(0, T; V')$$

com $\varphi_{n,k}$ na dualidade $\langle .,. \rangle_{L^2(0,T;V'),L^2(0,T;V)}$, isto é,

$$\int_0^T \langle u''(t), \varphi_{n,k}(t) \rangle_{V',V} dt + \int_0^T \langle Au(t), \varphi_{n,k}(t) \rangle_{V',V} dt = \int_0^T \langle f(t), \varphi_{n,k}(t) \rangle_{V',V} dt \quad (2.186)$$

(i) Análise do primeiro termo à esquerda de (2.186).

$$\int_{0}^{T} \langle u''(t), \varphi_{n,k}(t) \rangle dt = \int \langle u''(t), \theta_{n}(t) [(u\theta_{n}) * \rho_{k} * \rho'_{k} - (u\theta'_{n}) * \rho_{k} * \rho_{k}] \rangle dt$$

$$= \int_{0}^{T} \langle u''\theta_{n}, (u\theta_{n}) * \rho_{k} * \rho'_{k} - (u\theta'_{n}) * \rho_{k} * \rho_{k} \rangle dt$$

$$= \int_{0}^{T} \langle u''\theta_{n}, (u'\theta_{n}) * \rho_{k} * \rho_{k} \rangle dt$$

$$= \int_{0}^{T} \langle (u''\theta_{n}) * \rho_{k}(-), (u'\theta_{n}) * \rho_{k} \rangle dt$$

$$\stackrel{(2.174)}{=} \int_{0}^{T} \langle (u''\theta_{n}) * \rho_{k}, (u'\theta_{n}) * \rho_{k} \rangle dt$$

$$(2.187)$$

Contudo

$$u' \in L^{\infty}(0, T; H) \cap H^{1}(0, T; V') \subset L^{\infty}(0, T; H) \cap C([0, T]; V')$$
 (2.188)

De (2.181), temos $\theta_n \in H_0^1(0,T) \subset C([0,T])$

por Leibniz: $(u'\theta_n)' = u''\theta_n + u'\theta'_n$

Assim por (2.181), (2.188) e por Leibniz, obtemos

$$(u''\theta_n) * \rho_k = (u'\theta)' * \rho_k - (u'\theta_n') * \rho$$
 (2.189)

Então de (2.186), (2.187) e (2.189), temos

$$\int_{0}^{T} \langle u'', \varphi_{n,k} \rangle dt = \int_{0}^{T} \langle (u''\theta_{n}) * \rho_{k}, (u'\theta) * \rho_{k} \rangle dt$$

$$= \int_{0}^{T} \langle (u'\theta_{n})' * \rho_{k} - (u'\theta'_{n}) * \rho_{k}, (u'\theta_{n}) * \rho_{k} \rangle dt \qquad (2.190)$$

$$= \int_{0}^{T} \langle (u'\theta_{n})' * \rho_{k}, (u'\theta_{n}) * \rho_{k} \rangle dt - \int_{0}^{T} ((u'\theta'_{n}) * \rho, (u'\theta_{n}) * \rho_{k}) dt.$$

Mas por (2.180) resulta que:

$$\int_0^T \frac{d}{dt} ((u'\theta_n)' * \rho_k, (u'\theta_n) * \rho_k) dt = \int_0^T \frac{d}{dt} ((\theta_n u'), (u'\theta_n) * \rho_k * \rho_k) dt = 0$$

contudo

$$\frac{d}{dt} ((\theta_n u'), (u'\theta_n) * \rho_k * \rho_k) = 2([(u'\theta_n) * \rho_k]', (u'\theta_n) * \rho_k)$$

$$= 2((u'\theta_n)' * \rho_k, (u'\theta_n) * \rho_k)$$

Daí

$$\int_{0}^{T} ((u'\theta_{n})' * \rho_{k}, (u'\theta_{n}) * \rho_{k}) dt = 0.$$
(2.191)

Então de (2.190) e (2.191), segue

$$\int_0^T \langle u''(t), \varphi_{n,k}(t) \rangle dt = -\int_0^T \left((u'\theta_n') * \rho, (u'\theta_n) * \rho_k \right) dt.$$
 (2.192)

Entretanto:

$$(u'\theta'_n) * \rho_k \longrightarrow u'\theta' \quad \text{em} \quad L^2(0,T;H)$$

 $(u'\theta_n) * \rho_k \longrightarrow u'\theta \quad \text{em} \quad L^2(0,T;H)$

Logo de (2.192) e das convergências acima, concluímos que

$$\int_0^T \langle u''(t), \varphi_{n,k}(t) \rangle dt \xrightarrow{k \to +\infty} - \int_0^T \theta_n' \theta_n |u'(t)|^2 dt.$$
 (2.193)

(ii) Análise do segundo termo à esquerda de (2.186)

$$\int_0^T \langle Au, \varphi_{n,k} \rangle dt = \int_0^T ((u, \varphi_{n,k})) dt = \int_0^T ((u\theta_n, (u'\theta_n) * \rho_k * \rho_k)) dt$$

$$= \int_0^T (((u\theta_n) * \rho_k, (u'\theta_n) * \rho_k)) dt$$

$$= \int_0^T (((u\theta_n) * \rho_k, (u\theta_n)' * \rho_k)) dt$$

$$- \int_0^T (((u\theta_n) * \rho_k, (u\theta'_n) * \rho_k)) dt. \quad (2.194)$$

Mas

$$\left[(u\theta_n)' * \rho_k \right](t) = \left[(u\theta_n) * \rho_k \right]'(t) \quad , \quad \forall t \in [0, T]$$
 (2.195)

Logo de (2.194) e (2.195), obtemos

$$\int_{0}^{T} \langle Au, \varphi_{n,k} \rangle dt = \int_{0}^{T} ((u\theta) * \rho_{k}, (u\theta_{n})' * \rho_{k})) dt - \int_{0}^{T} ((u\theta_{n}) * \rho_{k}, (u\theta'_{n}) * \rho_{k})) dt$$
 (2.196)

Notemos que

$$\frac{d}{dt}(((u\theta_n) * \rho_k, (u\theta_n) * \rho_k)) = 2(((u\theta_n) * \rho_k, [(u\theta_n) * \rho_k]'))$$

$$= 2(((u\theta_n) * \rho_k, (u\theta_n) * \rho'_k))$$

Logo

$$\int_{0}^{T} (((u\theta_{n}) * \rho_{k}, (u\theta_{n}) * \rho'_{k}))dt = \frac{1}{2} \int_{0}^{T} \frac{d}{dt} (((u\theta_{n}) * \rho_{k}, (u\theta_{n}) * \rho_{k})) \stackrel{(2.180)}{=} 0 \quad (2.197)$$

Assim de (2.196) e (2.197), obtemos

$$\int_0^T \langle Au, \varphi_{n,k} \rangle dt = -\int_0^T (((u\theta_n) * \rho_k, (u\theta'_n) * \rho_k)) dt$$
 (2.198)

como:

$$(u\theta_n) * \rho_k \longrightarrow u\theta_n \quad \text{em} \quad L^2(0, T; V)$$

 $(u\theta'_n) * \rho_k \longrightarrow u\theta'_n \quad \text{em} \quad L^2(0, T; V)$

resulta de (2.198) que

$$\int_0^T \langle Au, \varphi_{n,k} \rangle dt \xrightarrow{k \to +\infty} - \int_0^T \theta_n' \theta_n \| u(t) \|_V dt$$
 (2.199)

(iii) Análise do termo à direita da igualdade em (2.186)

Temos

$$\int_0^T (f(t), \varphi_{n,k}(t)) dt = \int_0^T ((f\theta_n) * \rho_k, (u'\theta_n) * \rho_k) dt$$
(2.200)

como:

$$(f\theta_n) * \rho_k \longrightarrow f\theta_n \quad \text{em} \quad L^2(0, T; H)$$

 $(u'\theta_n) * \rho_k \longrightarrow u'\theta_n \quad \text{em} \quad L^2(0, T; H)$

então, de (2.200), obtemos

$$\int_{0}^{T} \left(f(t), \varphi_{n,k}(t) \right) dt \xrightarrow{k \to +\infty} - \int_{0}^{T} \theta_{n}^{2}(f(t), u(t)) dt \tag{2.201}$$

Portanto para cada n, de (2.186, (2.193), (2.199) e (2.201), vem que:

$$-\int_0^T \theta_n' \theta_n |u'(t)|^2 dt - \int_0^T \theta_n' \theta_n ||u(t)||^2 dt = \int_0^T \theta_n^2 (f(t), u'(t)) dt$$
 (2.202)

O próximo passo é passar o limite em (2.202) quando $n \to +\infty$, o qual é obtido como consequência do seguinte lema:

Lema 2.4. Se $h \in L^1(0,T)$ e s_0 e t_0 , são pontos de Lebesgue de h então,

$$-\int_0^T \theta_n' \theta_n h(\xi) d\xi \stackrel{n \to +\infty}{\longrightarrow} \frac{1}{2} (h(t_0) - h(s_0))$$

Demonstração: Com efeito, temos

$$-\int_0^T \theta_n' \theta_n h(\xi) d\xi = -\int_{s_0-\frac{1}{2}}^{s_0} n \left[1 + n(\xi - s_0) \right] h(\xi) d\xi + \int_{t_0}^{t_0+\frac{1}{n}} n \left[1 - n(\xi - t_0) \right] h(\sigma) d\sigma$$

Mas

$$\int_{s_0 - \frac{1}{n}}^{s_0} n \left[1 + n(\xi - s_0) \right] h(\xi) d\xi = \int_{s_0 - \frac{1}{n}}^{s_0} n h(\xi) d\xi + \int_{s_0 - \frac{1}{n}}^{s_0} n^2 (\xi - s_0) h(\xi) d\xi$$

$$= \frac{1}{(1 \setminus n)} \int_{s_0 - \frac{1}{n}}^{s_0} h(\xi) d\xi + \frac{1}{(1 \setminus n^2)} \int_{s_0 - \frac{1}{n}}^{s_0} (\xi - s_0) h(\xi) d\xi \longrightarrow \frac{1}{2} h(s_0)$$

Analogamente

$$\int_{t_0}^{t_0+\frac{1}{n}} n \left[1 - n(\xi - t_0)\right] h(\sigma) d\sigma \longrightarrow \frac{1}{2} h(t_0)$$

o que prova o lema

Se s_0 e t_0 são pontos de Lebesgue das funções, |u'(.)|, ||u(.)|| e (f(.), u'(.)) então de (2.202) e do lema anterior resulta, na passagem ao limite quando $n \to +\infty$:

$$\frac{1}{2}|u'(t)|^2 + \frac{1}{2}||u'(t)||^2 = \frac{1}{2}|u'(s)|^2 + \frac{1}{2}||u'(s)||^2 + \int_s^t (f(\xi), u'(\xi))d\xi$$
 (2.203)

para quase todo $s, t \in [0, T]$, com 0 < s < t < T.

Consideremos, agora, a sequência real $s_{\nu} \to 0$ e $t \in [0,T]$, tais que (2.203) se verifique para t e $s=s_{\nu}$. Temos então para quase todo $t \in [0,T]$:

$$\frac{1}{2}|u'(t)|^2 + \frac{1}{2}||u'(t)||^2 = \frac{1}{2}|u'(s_{\nu})|^2 + \frac{1}{2}||u'(s_{\nu})||^2 + \int_s^t (f(\xi), u'(\xi))d\xi \tag{2.204}$$

Contudo, pelo fato de $u \in C_s([0,T];V)$ e $u' \in C_s([0,T];H)$ então, identificando-se $H \equiv H'$, vem que

$$\langle Au(0), u(s_{\nu}) \rangle_{V',V} \longrightarrow \langle Au(0), u(0) \rangle_{V',V}$$

ou seja

$$((u(s_{\nu}), u(0))) \stackrel{\nu \to +\infty}{\longrightarrow} ((u(0), u(0))) = ||u(0)||^2.$$

Também

$$(u'(s_{\nu}), u'(0))_H \stackrel{\nu \to +\infty}{\longrightarrow} (u'(0), u'(0)) = |u'(0)|^2.$$

Logo

$$||u(0)||^{2} \leq \lim_{s_{\nu} \to 0} \inf ||u(s_{\nu})|| ||u(0)||$$

$$|u'(0)|^{2} \leq \lim_{s_{\nu} \to 0} \inf |u'(s_{\nu})| |u'(0)|$$
(2.205)

Tomando o limite em ambos os lados de (2.204) resulta de (2.205) que

$$\frac{1}{2}|u'(t)|^{2} + \frac{1}{2}||u(t)||^{2} = \lim_{s_{\nu}\to 0} \inf\left(\frac{1}{2}|u'(s_{\nu})|^{2} + \frac{1}{2}||u'(s_{\nu})||^{2} + \int_{s}^{t} (f(\xi), u'(\xi))d\xi\right)$$

$$\geq \frac{1}{2}\lim_{s_{\nu}\to 0} \inf|u'(s_{\nu})|^{2} + \frac{1}{2}\lim_{s_{\nu}\to 0} \inf||u(s_{\nu})||^{2} + \lim_{s_{\nu}\to 0} \inf\int_{s_{\nu}}^{t} (f(\xi), u'(\xi))d\xi$$

$$\geq \frac{1}{2}|u'(0)|^{2} + \frac{1}{2}||u(0)||^{2} + \int_{0}^{t} (f(\xi), u'(\xi))d\xi$$

Donde

$$\frac{1}{2}|u'(t)|^2 + \frac{1}{2}||u(t)||^2 \ge \frac{1}{2}|u'(0)|^2 + \frac{1}{2}||u(0)||^2 + \int_0^t (f(\xi), u'(\xi))d\xi$$

para quase todo $t \in [0, T]$.

Na teoria desenvolvida, para estimar a identidade da energia, considere

 $V = \{u \in H^1(\mathcal{M}); \int_{\mathcal{M}} u d\mathcal{M} = 0\}$ e $H = L^2(\mathcal{M})$. Também temos $A = -\Delta$. Assim, consideremos $f \in L^2(0,T;L^2(\mathcal{M}))$ com dados iniciais $\{u^0,u^1\} \in V \times L^2(\mathcal{M})$. Para este problema, mostramos que a solução existe e satisfaz as requeridas hipóteses desta seção. Portanto, obtemos, a seguinte estimativa

$$\frac{1}{2}\|u'(t)\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla u(t)\|_{L^2(\mathcal{M})}^2 \ge \frac{1}{2}\|u'(0)\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla u(0)\|_{L^2(\mathcal{M})}^2 + \int_0^t (f(\xi), u'(\xi))d\xi.$$

Por outro lado, do problema aproximado (2.154), vem que

$$\frac{1}{2}\|u'_m(t)\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla u_m(t)\|_{L^2(\mathcal{M})}^2 \le \frac{1}{2}\|u_{1m}\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla u_{0m}\|_{L^2(\mathcal{M})}^2 \le C \quad (2.206)$$

Pelo princípio da limitação uniforme, temos

$$||u'(t)||_{L^2(\mathcal{M})}^2 \le ||u'||_{L^{\infty}(0,T;L^2(\mathcal{M}))} \le \lim_{\mu \to +\infty} \inf ||u'_{\mu}||_{L^{\infty}(0,T;L^2(\mathcal{M}))}$$

e

$$||u(t)||_V^2 \le ||u||_{L^{\infty}(0,T;V)} \le \lim_{\mu \to +\infty} \inf ||u_{\mu}||_{L^{\infty}(0,T;V)}$$

tomando o liminf em (2.206) resulta que

$$\frac{1}{2}\|u'(t)\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla u(t)\|_{L^2(\mathcal{M})}^2 \le \frac{1}{2}\|u^1\|_{L^2(\mathcal{M})}^2 + \frac{1}{2}\|\nabla u^0\|_{L^2(\mathcal{M})}^2$$

donde

$$\frac{1}{2}\|u'(t)\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2}\|\nabla u(t)\|_{L^{2}(\mathcal{M})}^{2} \leq \frac{1}{2}\|u^{1}\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2}\|\nabla u^{0}\|_{L^{2}(\mathcal{M})}^{2} + \int_{0}^{t} (f(\xi), u'(\xi))d\xi$$

Portanto das afirmações acima, obtemos a seguinte identidade de energia:

$$\frac{1}{2}\|u'(t)\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2}\|\nabla u(t)\|_{L^{2}(\mathcal{M})}^{2} = \frac{1}{2}\|u^{1}\|_{L^{2}(\mathcal{M})}^{2} + \frac{1}{2}\|\nabla u^{0}\|_{L^{2}(\mathcal{M})}^{2} + \int_{0}^{t} (f(\xi), u'(\xi))d\xi$$

Para o caso do problema com dissipação não-linear, tratamos de forma análoga ao feito no caso linear, observando é claro, as propriedades da função g e as estimativas já feitas para o problema aproximado.

Resultado de Estabilidade

3.1 Hipóteses Geométricas Essenciais

Seja \mathcal{M} uma superfície compacta, mergulhada, orientada e sem fronteira em \mathbb{R}^3 com $\mathcal{M}=\mathcal{M}_0\cup\mathcal{M}_1$, onde

$$\mathcal{M}_1 = \left\{ x \in \mathcal{M} \, ; \, m(x) \cdot \nu(x) > 0 \right\} \quad \text{e} \quad \mathcal{M}_0 = \mathcal{M} \setminus \mathcal{M}_1 \tag{3.1}$$

onde m é o campo de vetores definido por $m(x) := x - x^0$, $(x^0 \in \mathbb{R}^3, \text{ fixado})$ e ν é o campo de vetores normais unitários exteriores de \mathcal{M} .

Neste trabalho, investigaremos as propriedades da estabilidade das funções u(x,t), $u_t(x,t)$, que resolvem o seguinte problema com dissipação localmente distribuída.

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u + a(x)g(u_t) = 0 & \text{em } \mathcal{M} \times (0, \infty) \\ u(0) = u^0 , u_t(0) = u^1 \end{cases}$$
(3.2)

onde a função g satisfaz as seguintes propriedades:

Hipótese.3.1 g é uma função real, tal que

- i) g(s) é contínua e monótona crescente e diferenciável por partes
- $ii) g(s)s > 0 para s \neq 0$
- $iii) \ k|s| \leq g(s) \leq K|s|$ se $|s| \geq 1,$ onde ke Ksão duas constantes positivas.
- $|y'(s)| \le M$ se $|s| \ge 1$, onde M é uma constante positiva.

Mais além, para obter a estabilização do problema (3.2), nós precisamos da seguinte hipótese geométrica:

Hipótese.3.2 Para cada $i=1,\ldots,k,\,\mathcal{M}_{0i}\subset\mathcal{M}_0$ são subconjuntos abertos com fronteira

 $\partial \mathcal{M}_{0i}$ (regular), tais que \mathcal{M}_{0i} são regiões umbílicas e a curvatura média H nessas regiões é não-positiva ($H \leq 0$), ou mais geralmente, que as curvaturas principais k_1 e k_2 satisfazem $|k_1(x) - k_2(x)| < \varepsilon_i$ para todo $x \in \mathcal{M}_{0i}$, (onde ε_i é considerado suficientemente pequeno). Seja $a \in L^{\infty}(\mathcal{M})$ uma função não-negativa tal que

$$a(x) \ge a_0 > 0 \quad \text{em } \mathcal{M}_* \tag{3.3}$$

onde \mathcal{M}_* é um subconjunto aberto de \mathcal{M} que contém $\mathcal{M} \setminus \bigcup_{i=1}^k \mathcal{M}_{0i}$.

E na sequência para nosso caso definimos $\Sigma=\mathcal{M}\times]0,T[$, $\Sigma_i=\mathcal{M}_i\times]0,T[$, i=0,1.

Antes de iniciar nosso resultado de estabilidade, nós definiremos algumas funções necessárias, com esta finalidade, estamos seguindo as idéias introduzidas primeiramente em Lasiecka e Tataru [18]. Para a compreensão do leitor, repeti-los-emos momentaneamente. Seja h uma função côncava estritamente crescente, com h(0) = 0, e tal que

$$h(sg(s)) \ge s^2 + g(s)^2$$
, para $|s| \le 1$ (3.4)

Com esta função, definimos

$$r(.) = h\left(\frac{\cdot}{med(\Sigma_1)}\right) \tag{3.5}$$

onde $\Sigma_1 = \mathcal{M}_1 \times]0, T[$. Observe que r será monótona crescente, então cI + r é inversível para todo $c \geq 0$. Para L uma constante positiva, colocamos

$$p(x) = (cI + r)^{-1}(Lx)$$
(3.6)

desta forma a função p é positiva, contínua e estritamente crescente com p(0)=0. Por fim, seja

$$q(x) = x - (I+p)^{-1}(x)$$
(3.7)

3.1.1 Resultado Principal

Agora podemos enunciar nosso resultado de estabilidade.

Teorema 3.1. Suponha que as hipóteses **3.1** e **3.2** sejam satisfeitas. Seja u a solução fraca do problema (3.2) com a energia E(t) definida como em (2.56). Então existe um $T_0 > 0$ tal que,

$$E(t) \le S\left(\frac{t}{T_0} - 1\right) \quad , \quad \forall t > T_0 \tag{3.8}$$

 $com \lim_{t \to \infty} S(t) = 0$, onde o semigrupo de contração S(t) é a solução da equação

$$\begin{cases} \frac{d}{dt}S(t) + q(S(t)) = 0\\ S(0) = E(0) \end{cases}$$
(3.9)

onde q é dado em (3.7). Aqui a constante L da definição (3.6) dependerá da $med(\Sigma)$, e a constante c de (3.6) é tomado como $c = \frac{K^{-1} + K}{med(\Sigma)(1 + ||a||_{L^{\infty}(\mathcal{M})})}$.

Observação 3.2. Se o termo dissipativo é linear, então, sob as mesmas hipóteses do teorema 3.1, obtemos que a energia associada ao problema (3.2) decai exponencialmente no que diz respeito à energia inicial. Existem duas constantes C > 0 e $\gamma > 0$ tais que

$$E(t) \le Ce^{-\gamma t}E(0) \quad , \ t > 0$$

Como um outro exemplo, podemos considerar $g(s) = s^p$, com p > 1 na origem. Desde que a função $S^{\frac{p+1}{2}}$ seja convexa para $p \ge 1$, então resolvendo $S_t + S^{\frac{p+1}{2}} = 0$, obtemos a seguinte taxa de decaimento polinomial:

$$E(t) \le C(E(0)) \left[E(0)^{\frac{-p+1}{2}} + t(p-1) \right]^{\frac{-p+1}{2}}$$

Nós podemos encontrar uma taxa de decaimento explícito mais interessante em [9].

3.2 Prova do Teorema 3.1

3.2.1 Preliminares

Em seguida, citaremos algumas fórmulas a serem utilizadas na sequência.

Seja ν o campo de vetores normais unitários exteriores em \mathcal{M} . Para todo $x \in \mathcal{M}$, nós denotaremos por $\pi(x)$ a projeção ortogonal sobre o plano tangente $T_x\mathcal{M}$. Para um campo vetorial regular $q: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ coloquemos como antes:

$$q(x) = q_T + (q(x) \cdot \nu(x)) \cdot \nu(x)$$

onde $q_T = \pi(x) \cdot q(x)$ é a componente tangencial de q.

Se $\varphi:\mathbb{R}^3\longrightarrow\mathbb{R}$ é uma função regular, nós temos

$$\nabla \varphi = \partial_{\nu} \varphi_{\nu} + \nabla_{T} \varphi \quad \text{em } \mathcal{M}$$
 (3.10)

$$|\nabla \varphi|^2 = |\partial_{\nu} \varphi|^2 + |\nabla_T \varphi|^2 \quad \text{em } \mathcal{M}$$
 (3.11)

onde ∂_{ν} representa a derivada normal exterior de \mathcal{M} e $\nabla_T \varphi$ é o gradiente tangencial de φ .

O operator Laplace-Beltrami $\Delta_{\mathcal{M}}$ de uma função $\varphi:\mathcal{M}\longrightarrow\mathbb{R}$ de classe C^2 é definido por

$$\Delta_{\mathcal{M}}\varphi := div_T \nabla_T \varphi$$

onde $div_T \nabla_T \varphi$ é o divergente do campo de vetores $\nabla_T \varphi$.

Suponhamos que $\varphi: \mathcal{M} \longrightarrow \mathbb{R}$ é uma função de classe C^1 e $q: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ é um campo vetorial de classe C^1 . Então pelo que foi mostrado na seção **1.10** temos

$$\int_{\mathcal{M}} q_T \nabla_T \varphi d\mathcal{M} = -\int_{\mathcal{M}} div_T \nabla_T \varphi d\mathcal{M}$$
 (3.12)

$$2\varphi(q_T\nabla_T\varphi) = q_T\nabla_T(\varphi^2) \tag{3.13}$$

De (3.12) e (3.13), concluímos a seguinte fórmula

$$\int_{\mathcal{M}} 2\varphi(q_T \nabla_T \varphi) = \int_{\mathcal{M}} q_T \nabla_T(\varphi^2) = -\int_{\mathcal{M}} div_T \nabla_T |\varphi|^2 d\mathcal{M}$$
 (3.14)

Observemos que no caso particular quando $m(x)=x-x^0$ com $x\in\mathbb{R}^3$ e $x^0\in\mathbb{R}^3$ fixado, obtemos

$$div m = 3 , div_T m_T = 2 + (m \cdot \nu) Tr B (3.15)$$

onde B é a segunda forma fundamental de \mathcal{M} (i.e., o operador forma) e Tr é o seu traço.

Sejam φ e m definidos como acima. Então temos também

$$\nabla_T \varphi \cdot \nabla_T m_T \cdot \nabla_T \varphi = |\nabla_T \varphi|^2 + (m \cdot \nu)(\nabla_T \varphi \cdot B \cdot \nabla_T \varphi)$$
(3.16)

Observação 3.3. Na literatura o sinal de B pode ser diferente.Em nosso caso, B = -dN, onde N é a aplicação de Gauss relativo a ν .A identidade (3.15) pode ser reescrita por:

$$div \, m = 3$$
 , $div_T m_T = 2 + 2H(m \cdot \nu)$ (3.17)

onde $H = \frac{TrB}{2}$ é a curvatura média de \mathcal{M}

Nós definimos um operador linear e contínuo $-\Delta_{\tilde{\mathcal{M}}}: H^1(\tilde{\mathcal{M}}) \longrightarrow \left(H^1(\tilde{\mathcal{M}})\right)'$, onde $\tilde{\mathcal{M}}$ é um subconjunto aberto não vazio de \mathcal{M} , tal que

$$\langle -\Delta_{\tilde{\mathcal{M}}}\varphi, \psi \rangle = \int_{\mathcal{M}} \nabla_T \varphi \nabla_T \psi d\mathcal{M} \quad , \quad \forall \varphi, \psi \in H^1(\tilde{\mathcal{M}})$$
 (3.18)

em particular, temos

$$\langle -\Delta_{\tilde{\mathcal{M}}}\varphi, \varphi \rangle = \int_{\mathcal{M}} |\nabla_T \varphi|^2 d\mathcal{M} \quad , \quad \forall \varphi \in H^1(\tilde{\mathcal{M}})$$
 (3.19)

O operador $-\Delta_{\tilde{\mathcal{M}}} + I$ define um isomorfismo de $H^1(\tilde{\mathcal{M}})$ sobre $\left[H^1(\tilde{\mathcal{M}})\right]'$. E quando $\tilde{\mathcal{M}}$ é uma variedade sem fronteira, este é o caso por exemplo se $\mathcal{M} = \tilde{\mathcal{M}}$, nós temos $H^1(\tilde{\mathcal{M}}) = H^1_0(\tilde{\mathcal{M}})$.

Observação 3.4. Usando argumentos de densidade, concluímos que, todas as fórmulas descritas antes, podem ser generalizadas para os espaços de Sobolev.

Provaremos agora, alguns resultados que nos serão úteis.

Proposição 3.5. Seja $\mathcal{M} \subset \mathbb{R}^3$ uma superfície compacta regular orientada, sem fronteira e q um campo de vetores com $q = q_T + (q \cdot \nu)$. Então, para cada solução regular u de (3.2), nós temos a sequinte identidade.

$$\left[\int_{\mathcal{M}} u_t q_T \cdot \nabla_T u \, d\mathcal{M} \right]_0^T + \frac{1}{2} \int_0^T \int_{\mathcal{M}} (div_T q_T) \left\{ |u_t|^2 - |\nabla_T u|^2 \right\} d\mathcal{M} dt \qquad (3.20)$$

$$+ \int_0^T \int_{\mathcal{M}} \nabla_T u \cdot \nabla_T q_T \cdot \nabla_T u \, d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} a(x) g(u_t) (q_T \cdot \nabla_T u) d\mathcal{M} dt = 0$$

Demonstração: Multiplicando a equação (3.2) por $(q_T \cdot \nabla_T u)$ e integrando sobre $\mathcal{M} \times]0, T[$, obtemos

$$\int_{0}^{T} \int_{\mathcal{M}} \left(u_{tt} - \Delta_{\mathcal{M}} u + a(x)g(u_{t}) \right) (q_{T} \cdot \nabla_{T} u) d\mathcal{M} dt = 0$$
(3.21)

Em seguida, estimaremos alguns termos do lado esquerdo da igualdade (3.21). Levando (3.13), (3.14) e (3.18) em consideração, então nós temos

$$\int_{0}^{T} \int_{\mathcal{M}} (-\Delta_{\mathcal{M}} u) (q_{T} \cdot \nabla_{T} u) d\mathcal{M} dt \stackrel{(3.18)}{=} \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot \nabla_{T} (q_{T} \nabla_{T} u) d\mathcal{M} dt
= \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot \nabla_{T} q_{T} \cdot \nabla_{T} u d\mathcal{M} dt + \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot q_{T} \cdot \nabla_{T} (\nabla_{T} u) d\mathcal{M} dt
\stackrel{(3.13)}{=} \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot \nabla_{T} q_{T} \cdot \nabla_{T} u d\mathcal{M} dt + \frac{1}{2} \int_{0}^{T} \int_{\mathcal{M}} q_{T} \cdot \nabla_{T} [|\nabla_{T} u|^{2}] d\mathcal{M} dt
\stackrel{(3.14)}{=} \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot \nabla_{T} q_{T} \cdot \nabla_{T} u d\mathcal{M} dt - \frac{1}{2} \int_{0}^{T} \int_{\mathcal{M}} |\nabla_{T} u|^{2} div_{T} q_{T} d\mathcal{M} dt \quad (3.22)$$

integrando por partes e considerando (3.14), da outra parte da igualdade (3.21), obtemos

$$\int_{0}^{T} \int_{\mathcal{M}} (u_{tt} + a(x)g(u_{t}))(q_{T} \cdot \nabla_{T}u) d\mathcal{M}dt
= \int_{0}^{T} \int_{\mathcal{M}} u_{tt}(q_{T} \cdot \nabla_{T}u) d\mathcal{M}dt + \int_{0}^{T} \int_{\mathcal{M}} a(x)g(u_{t})(q_{T} \cdot \nabla_{T}u) d\mathcal{M}dt
= \left[\int_{\mathcal{M}} u_{t}(q_{T} \cdot \nabla_{T}u) d\mathcal{M} \right]_{0}^{T} - \int_{0}^{T} \int_{\mathcal{M}} u_{t}(q_{T} \cdot \nabla_{T}u_{t}) d\mathcal{M}dt
+ \int_{0}^{T} \int_{\mathcal{M}} a(x)g(u_{t})(q_{T} \cdot \nabla_{T}u) d\mathcal{M}dt
\stackrel{(3.14)}{=} \left[\int_{\mathcal{M}} u_{t}(q_{T} \cdot \nabla_{T}u) d\mathcal{M} \right]_{0}^{T} + \frac{1}{2} \int_{0}^{T} \int_{\mathcal{M}} (div_{T}q_{T}) |u_{t}|^{2} d\mathcal{M}
+ \int_{0}^{T} \int_{\mathcal{M}} a(x)g(u_{t})(q_{T} \cdot \nabla_{T}u) d\mathcal{M}dt$$
(3.23)

combinando (3.21), (3.22) e (3.23), concluímos (3.20) \Box

Empregando $q(x) = m(x) = x - x^0$ na proposição anterior, e considerando (3.15)

e (3.16), deduzimos que

$$0 = \left[\int_{\mathcal{M}} u_{t} m_{T} \nabla_{T} u \, d\mathcal{M} \right]_{0}^{T} + \frac{1}{2} \int_{0}^{T} \int_{\mathcal{M}} (div_{T} m_{T}) \{|u_{t}|^{2} - |\nabla_{T} u|^{2}\} d\mathcal{M} dt$$

$$+ \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot \nabla_{T} m_{T} \cdot \nabla_{T} u \, d\mathcal{M} dt + \int_{0}^{T} \int_{\mathcal{M}} a(x) g(u_{t}) (m_{T} \cdot \nabla_{T} u) d\mathcal{M} dt$$

$$= \left[\int_{\mathcal{M}} u_{t} \nabla_{T} u \, d\mathcal{M} \right]_{0}^{T} + \int_{0}^{T} \int_{\mathcal{M}} \{|u_{t}|^{2} - |\nabla_{T} u|^{2} d\mathcal{M} dt$$

$$+ \int_{0}^{T} \int_{\mathcal{M}} H(m.\nu) \{|u_{t}|^{2} - |\nabla_{T} u|^{2}\} d\mathcal{M} dt + \int_{0}^{T} \int_{\mathcal{M}} [|\nabla_{T} u|^{2} + (m.\nu)(\nabla_{T} u \cdot B \cdot \nabla_{T} u)] d\mathcal{M} dt$$

$$+ \int_{0}^{T} \int_{\mathcal{M}} a(x) g(u_{t}) (m_{T} \cdot \nabla_{T} u) d\mathcal{M} dt$$

$$(3.24)$$

Em seguida temos a seguinte identidade

Lema 3.6. Seja u uma solução fraca para o problema (3.2) e $\xi \in C^1(\mathcal{M})$. Então

$$\left[\int_{\mathcal{M}} u_t \xi u d\mathcal{M} \right]_0^T = \int_0^T \int_{\mathcal{M}} \xi |u_t|^2 d\mathcal{M} dt - \int_0^T \int_{\mathcal{M}} \xi |\nabla_T u|^2 d\mathcal{M} dt
- \int_0^T \int_{\mathcal{M}} (\nabla_T u \cdot \nabla_T \xi) u d\mathcal{M} dt - \int_0^T \int_{\mathcal{M}} a(x) g(u_t) \xi u d\mathcal{M} dt \quad (3.25)$$

Demonstração: Multiplicando a equação (3.2) por ξu e integrando por partes, obtemos

$$0 = \int_{0}^{T} \int_{\mathcal{M}} (u_{tt} - \Delta_{\mathcal{M}} + a(x)g(u_{t}))\xi u \, d\mathcal{M}dt$$
$$= \int_{0}^{T} \int_{\mathcal{M}} u_{tt}\xi u d\mathcal{M}dt + \int_{0}^{T} \int_{\mathcal{M}} -\Delta_{\mathcal{M}} u\xi u d\mathcal{M}dt \int_{0}^{T} \int_{\mathcal{M}} a(x)g(u_{t})\xi u d\mathcal{M}dt$$

Agora note que

$$\int_0^T \!\! \int_{\mathcal{M}} u_{tt} \xi u d\mathcal{M} dt = \left[\int_{\mathcal{M}} u_t \xi u d\mathcal{M} \right]_0^T - \int_0^T \!\! \int_{\mathcal{M}} \xi |u_t|^2 d\mathcal{M} dt$$

е

$$\int_{0}^{T} \int_{\mathcal{M}} -\Delta_{\mathcal{M}} u \xi u d\mathcal{M} dt = \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} u \cdot \nabla_{T}(\xi u) d\mathcal{M} dt
= \int_{0}^{T} \int_{\mathcal{M}} \nabla_{T} (u \nabla_{T} \xi + \xi \nabla_{T} u) d\mathcal{M} dt
= \int_{0}^{T} \int_{\mathcal{M}} \left[u (\nabla_{T} u \cdot \nabla_{T} \xi) + \xi |\nabla_{T} u|^{2} \right] d\mathcal{M} dt$$

Portanto

$$\left[\int_{\mathcal{M}} u_t \xi u d\mathcal{M} \right]_0^T = \int_0^T \int_{\mathcal{M}} \xi |u_t|^2 d\mathcal{M} dt
- \int_0^T \int_{\mathcal{M}} \left[u(\nabla_T u \cdot \nabla_T \xi) + \xi |\nabla_T u|^2 \right] d\mathcal{M} dt - \int_0^T \int_{\mathcal{M}} a(x) g(u_t) \xi u d\mathcal{M} dt$$

o que prova o desejado

Substituindo $\xi = \frac{1}{2}$ no lema anterior e combinando o resultado com a identidade (3.24), nós obtemos

$$\left[\int_{\mathcal{M}} u_t m_T \nabla_T u \, d\mathcal{M}\right]_0^T + \frac{1}{2} \left[\int_{\mathcal{M}} u_t u \, d\mathcal{M}\right]_0^T - \frac{1}{2} \int_0^T \int_{\mathcal{M}} |u_t|^2 d\mathcal{M} dt
+ \int_0^T \int_{\mathcal{M}} |\nabla_T u|^2 d\mathcal{M} dt + \frac{1}{2} \int_0^T \int_{\mathcal{M}} a(x) g(u_t) u \, d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} |u_t|^2 d\mathcal{M} dt
- \int_0^T \int_{\mathcal{M}} |\nabla_T u|^2 d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} |\nabla_T u|^2 d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} (m \cdot \nu) (\nabla_T u \cdot B \cdot \nabla_T u) d\mathcal{M} dt
\int_0^T \int_{\mathcal{M}} (m \cdot \nu) H[|u_t|^2 - |\nabla_T u|^2] d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} a(x) g(u_t) (m_T \cdot \nabla_T u) d\mathcal{M} dt = 0$$

ou seja

$$\left[\int_{\mathcal{M}} u_t m_T \nabla_T u \, d\mathcal{M}\right]_0^T + \frac{1}{2} \left[\int_{\mathcal{M}} u_t u \, d\mathcal{M}\right]_0^T + \int_0^T E(t) dt$$

$$+ \frac{1}{2} \int_0^T \int_{\mathcal{M}} a(x) g(u_t) u \, d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} a(x) g(u_t) (m_T \cdot \nabla_T u) d\mathcal{M} dt$$

$$= -\int_0^T \int_{\mathcal{M}} (m \cdot \nu) H[|u_t|^2 - |\nabla_T u|^2] d\mathcal{M} dt - \int_0^T \int_{\mathcal{M}} (m \cdot \nu) (\nabla_T u \cdot B \cdot \nabla_T u) d\mathcal{M} dt .$$
(3.26)

Vamos analisar os termos que envolvem o operador forma B. Vamos focalizar nossa atenção para o operador $B: T_x\mathcal{M} \longrightarrow T_x\mathcal{M}$, existe uma base ortonormal $\{e_1, e_2\}$ de $T_x\mathcal{M}$ tal que $Be_1 = k_1e_1$ e $Be_2 = k_2e_2$, onde k_1 e k_2 são as curvaturas principais de \mathcal{M} em x. A matriz de B com respeito à base $\{e_1, e_2\}$ é dada por

$$B := \left(\begin{array}{cc} k_1 & 0\\ 0 & k_2 \end{array}\right)$$

coloque $\nabla_T u = (\xi, \eta)$ as coordenadas de $\nabla_T u$ na base $\{e_1, e_2\}$, para cada $x \in \mathcal{M}$, temos

$$\nabla_T u \cdot B \cdot \nabla_T u = k_1 \xi^2 + k_2 \eta^2 \tag{3.27}$$

Então de (3.27), obtemos

$$(m \cdot \nu) \left[(\nabla_T u \cdot B \cdot \nabla_T u) - \frac{1}{2} Tr(B) |\nabla_T u|^2 \right]$$

$$= (m \cdot \nu) \left[k_1 \xi^2 + k_2 \eta^2 - \frac{1}{2} (k_1 + k_2) (\xi^2 + \eta^2) \right]$$

$$= (m \cdot \nu) \left[\frac{(k_1 - k_2)}{2} \xi^2 + \frac{(k_2 - k_1)}{2} \eta^2 \right]$$
(3.28)

Observação 3.7. Este é o momento preciso em que as propriedades intrínsecas da superfície \mathcal{M} aparecem, ou seja, precisamos fortemente que o termo $-\int_0^T\!\!\int_{\mathcal{M}}(m.\nu)H|u_t|^2d\mathcal{M}dt$ se encontre na região onde ocorre dissipação. Recordemos que o termo dissipativo atua em um conjunto aberto \mathcal{M}_* que contém $\mathcal{M}\setminus \bigcup_{i=1}^k\mathcal{M}_{0i}$. Assim assumindo que $H\leq 0$ e desde que $m(x)\cdot \nu(x)\leq 0$ sobre \mathcal{M}_0 , nós obtemos

$$-\int_0^T \int_{\mathcal{M}_0} (m \cdot \nu) H|u_t|^2 d\mathcal{M} dt \le 0$$

Além disso, supondo que \mathcal{M}_{0i} é uma região umbílica para cada $i=1,\ldots,k$, então, de (3.28), também temos que

$$\int_0^T \int_{\mathcal{M}_{0i}} (m \cdot \nu) [H|\nabla_T u|^2 - (\nabla_T u \cdot B \cdot \nabla_T u) d\mathcal{M} dt = 0$$

 $para i = 1, \dots, k.$

Mais geralmente, assumindo que as curvaturas principais k_1 e k_2 satisfazem $|k_1(x) - k_2(x)| < \varepsilon_i$ (onde ε_i é tomado suficientemente pequeno), para todo $x \in \mathcal{M}_{0i}$, i = 1, ..., k, nós obtemos

$$\left| \sum_{i=1}^{k} \int_{0}^{T} \int_{\mathcal{M}_{0i}} (m \cdot \nu) \left[H |\nabla_{T}u|^{2} - (\nabla_{T}u \cdot B \cdot \nabla_{T}u) \right] d\mathcal{M}dt \right|$$

$$\leq \sum_{i=1}^{k} \int_{0}^{T} \int_{\mathcal{M}_{0i}} |m \cdot \nu| |k_{1} - k_{2}| |\xi^{2} + \eta^{2}| d\mathcal{M}dt$$

$$= \sum_{i=1}^{k} \int_{0}^{T} \int_{\mathcal{M}_{0i}} |x - x^{0}| |k_{1} - k_{2}| |\xi^{2} + \eta^{2}| d\mathcal{M}dt$$

$$\leq \sum_{i=1}^{k} R_{i} \varepsilon_{i} \int_{0}^{T} \int_{\mathcal{M}_{0i}} |\nabla_{T}u|^{2} d\mathcal{M}dt$$

$$\leq 2 \sum_{i=1}^{k} R_{i} \varepsilon_{i} \int_{0}^{T} E(t) dt$$

onde
$$R_i = \max_{x \in \mathcal{M}_{0i}} ||x - x^0||_{\mathbb{R}^3}$$
.

Note que se $\mathcal{M}_{0i} = \mathcal{M}_0$ for uma região cônica conforme figura 2 então $m(x) \cdot \nu(x) = 0$; $\forall x \in \mathcal{M}_0$ e portanto $-\int_0^T \int_{\mathcal{M}_0} (m \cdot \nu) H|u_t|^2 d\mathcal{M} dt = 0$ e $\int_0^T \int_{\mathcal{M}_0} (m \cdot \nu) \left[H|\nabla_T u|^2 - (\nabla_T u \cdot B \cdot \nabla_T u) \right] d\mathcal{M} dt = 0$

Colocando $\mathcal{M}_2 = \mathcal{M} \setminus \bigcup_{i=1}^k \mathcal{M}_{0i}$. No caso em que cada \mathcal{M}_{0i} é uma região umbílica, então de acordo com (3.26), (3.28) e levado em consideração a observação 3.7, obtemos

$$\int_{0}^{T} E(t)dt \leq -\left[\int_{\mathcal{M}} u_{t} m_{T} \nabla_{T} u d\mathcal{M}\right]_{0}^{T} - \frac{1}{2} \left[\int_{\mathcal{M}} u_{t} u d\mathcal{M}\right]_{0}^{T} \\
+ \int_{0}^{T} \int_{\mathcal{M}_{2}} (m \cdot \nu) \left[H |\nabla_{T} u|^{2} - (\nabla_{T} u \cdot B \cdot \nabla_{T} u)\right] d\mathcal{M} dt \\
- \int_{0}^{T} \int_{\mathcal{M}_{2}} (m \cdot \nu) H |u_{t}|^{2} d\mathcal{M} dt - \underbrace{\int_{0}^{T} \int_{\mathcal{M}} a(x) g(u_{t}) (m_{T} \cdot \nabla_{T} u) d\mathcal{M} dt}_{I_{1}} \\
- \underbrace{\frac{1}{2} \int_{0}^{T} \int_{\mathcal{M}} a(x) g(u_{t}) u d\mathcal{M} dt}_{I_{2}} \tag{3.29}$$

No caso geral, a única diferença na prova é que o termo $\int_0^T E(t)dt$ que permanece no lado esquerdo de (3.29) estará multiplicado por uma constante positiva C, desde que consideremos ε_i suficientemente pequeno. Para simplificarmos, suponhamos C=1.

Denotaremos

$$\chi = \left[\int_{\mathcal{M}} u_t m_T \nabla_T u \, d\mathcal{M} \right]_0^T + \frac{1}{2} \left[\int_{\mathcal{M}} u_t u \, d\mathcal{M} \right]_0^T \tag{3.30}$$

$$R := \max_{x \in \mathcal{M}} \|m(x)\|_{\mathbb{R}^n} = \max_{x \in \mathcal{M}} \|x - x^0\|_{\mathbb{R}^n}$$
 (3.31)

Em seguida estimaremos alguns termos de (3.29)

Estimativa para $I_1 := \int_0^T \int_{\mathcal{M}} a(x)g(u_t)(m_T \cdot \nabla_T u)d\mathcal{M}dt$

da desigualdade de Cauchy-Schwarz, levando em conta (3.31) e considerando a desigual-

dade $ab \leq \frac{a^2}{4\eta} + \eta b^2$, onde η é um número positivo, obtemos

$$|I_{1}| \leq \int_{0}^{T} \int_{\mathcal{M}} |a(x)g(u_{t})m_{T}\nabla_{T}u|d\mathcal{M}dt$$

$$= \int_{0}^{T} \int_{\mathcal{M}} [a(x)]^{\frac{1}{2}}|g(u_{t})|[a(x)]^{\frac{1}{2}}|(m_{T}\cdot\nabla_{T}u)|d\mathcal{M}dt$$

$$\leq \int_{0}^{T} \left[\left(\int_{\mathcal{M}} a(x)|g(u_{t})|^{2}d\mathcal{M} \right)^{\frac{1}{2}} \left(\int_{\mathcal{M}} |m_{T}\cdot\nabla_{T}u|^{2}d\mathcal{M} \right)^{\frac{1}{2}} \right] dt$$

$$\leq \int_{0}^{T} \left[R||a||_{L^{\infty}(\mathcal{M})}^{\frac{1}{2}} \left(\int_{\mathcal{M}} a(x)|g(u_{t})|^{2}d\mathcal{M} \right)^{\frac{1}{2}} \left(\int_{\mathcal{M}} |\nabla_{T}u|^{2}d\mathcal{M} \right)^{\frac{1}{2}} \right] dt$$

$$\leq \int_{0}^{T} \left[\frac{R^{2}||a||_{L^{\infty}(\mathcal{M})}}{4\eta} \int_{\mathcal{M}} a(x)|g(u_{t})|^{2}d\mathcal{M}dt + 2\eta \int_{\mathcal{M}} \frac{1}{2} |\nabla_{T}u|^{2}d\mathcal{M} \right] dt$$

$$\leq \frac{R^{2}||a||_{L^{\infty}(\mathcal{M})}}{\eta} \int_{0}^{T} \int_{\mathcal{M}} a(x)|g(u_{t})|^{2}d\mathcal{M}dt + 2\eta \int_{0}^{T} E(t)dt \qquad (3.32)$$

Estimativa para $I_2 := \frac{1}{2} \int_0^T \int_{\mathcal{M}} a(x)g(u_t)u \, d\mathcal{M}dt$

$$|I_{2}| \leq \frac{1}{2} \int_{0}^{T} \left[\int_{\mathcal{M}} [a(x)]^{\frac{1}{2}} |g(u_{t})| [a(x)]^{\frac{1}{2}} |u| d\mathcal{M} \right] dt$$

$$\leq \frac{1}{2} \int_{0}^{T} \left(\int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} \right)^{\frac{1}{2}} \left(\int_{\mathcal{M}} a(x) |u|^{2} d\mathcal{M} \right)^{\frac{1}{2}} dt$$

$$\leq \int_{0}^{T} \left[\frac{\lambda_{1}^{-\frac{1}{2}} ||a||_{L^{\infty}(\mathcal{M})}}{2} \left(\int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} \right)^{\frac{1}{2}} \left(\int_{\mathcal{M}} |\nabla_{T} u|^{2} d\mathcal{M} \right)^{\frac{1}{2}} dt$$

$$\leq \int_{0}^{T} \left[\frac{\lambda_{1}^{-1} ||a||_{L^{\infty}(\mathcal{M})}}{16\eta} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} + 2\eta \int_{\mathcal{M}} \frac{1}{2} |\nabla_{T} u|^{2} d\mathcal{M} \right] dt$$

$$\leq \frac{\lambda_{1}^{-1} ||a||_{L^{\infty}(\mathcal{M})}}{16\eta} \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} dt + 2\eta \int_{0}^{T} E(t) dt \qquad (3.33)$$

onde λ_1 vem da desigualdade de Poincaré.

Tomando $\eta = \frac{1}{8}$ e considerando (3.30), (3.32) e (3.33) em (3.29), obtemos

$$\begin{split} \int_{0}^{T} & E(t)dt \leq |\chi| + \int_{0}^{T} \int_{\mathcal{M}_{2}} |m \cdot \nu| |H| \nabla_{T} u|^{2} - (\nabla_{T} u \cdot B \cdot \nabla_{T} u) |d\mathcal{M}dt \\ & + \int_{0}^{T} \int_{\mathcal{M}_{2}} |(m \cdot \nu) H| |u_{t}|^{2} d\mathcal{M}dt \\ & + 8R^{2} \|a\|_{L^{\infty}(\mathcal{M})} \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M}dt + \frac{1}{4} \int_{0}^{T} E(t) dt \\ & + 2^{-1} \lambda_{1}^{-1} \|a\|_{L^{\infty}(\mathcal{M})} \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M}dt + \frac{1}{4} \int_{0}^{T} E(t) dt \end{split}$$

ou seja

$$\begin{split} \frac{1}{2} \int_{0}^{T} & E(t)dt \leq |\chi| + \int_{0}^{T} \int_{\mathcal{M}_{2}} |m \cdot \nu| |H| \nabla_{T} u|^{2} - (\nabla_{T} u \cdot B \cdot \nabla_{T} u) |d\mathcal{M}dt \\ & + \int_{0}^{T} \int_{\mathcal{M}_{2}} |m \cdot \nu H| |u_{t}|^{2} d\mathcal{M}dt \\ & + \left(8R^{2} ||a||_{L^{\infty}(\mathcal{M})} + 2^{-1} \lambda_{1}^{-1} ||a||_{L^{\infty}(\mathcal{M})}\right) \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} \\ & \leq |\chi| + R \left[|H| \int_{0}^{T} \int_{\mathcal{M}_{2}} |\nabla_{T} u|^{2} d\mathcal{M}dt + ||B|| \int_{0}^{T} \int_{\mathcal{M}_{2}} |\nabla_{T} u|^{2} d\mathcal{M}dt \right] \\ & + \frac{R|H|}{a_{0}} \int_{0}^{T} \int_{\mathcal{M}} a(x) |u_{t}|^{2} d\mathcal{M}dt \\ & + \left(8R^{2} ||a||_{L^{\infty}(\mathcal{M})} + 2^{-1} \lambda_{1}^{-1} ||a||_{L^{\infty}(\mathcal{M})}\right) \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} \\ & = |\chi| + R \left[|H| + ||B|| \right] \int_{0}^{T} \int_{\mathcal{M}_{2}} |\nabla_{T} u|^{2} d\mathcal{M}dt + R|H|a_{0}^{-1} \int_{0}^{T} \int_{\mathcal{M}} a(x) |u_{t}|^{2} d\mathcal{M}dt \\ & + \left(8R^{2} ||a||_{L^{\infty}(\mathcal{M})} + 2^{-1} \lambda_{1}^{-1} ||a||_{L^{\infty}(\mathcal{M})}\right) \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M}, \end{split}$$

onde $|H| := \max_{x \in \mathcal{M}} |H(x)|$ e $||B|| := \max_{x \in \mathcal{M}} ||B(x)||$.

Logo

$$\frac{1}{2} \int_{0}^{T} E(t)dt \leq |\chi| + C_{1} \int_{0}^{T} \int_{\mathcal{M}} \left[a(x)|g(u_{t})|^{2} + a(x)|u_{t}|^{2} \right] d\mathcal{M}dt + C_{1} \int_{0}^{T} \int_{\mathcal{M}_{2}} |\nabla_{T}u|^{2} d\mathcal{M}dt
\text{onde } C_{1} := \max \left\{ \|a\|_{L^{\infty}(\mathcal{M})} \left[2^{-1}\lambda_{1}^{-1} + 8R^{2} \right], R|H| + R\|B\|, R|H|a_{0}^{-1} \right\}$$

Agora devemos estimar o termo $\int_0^T\!\!\int_{\mathcal{M}_2}\!\!|\nabla_T u|^2 d\mathcal{M}dt$ com relação ao termo dissipativo $\int_0^T\!\!\int_{\mathcal{M}}[a(x)|g(u_t)|^2+a(x)|u_t|^2]d\mathcal{M}dt$. Para esta finalidade construiremos uma função "cut-off" η_{ε} em uma vizinhança específica de \mathcal{M}_2 .

Primeiro de tudo, definamos $\tilde{\eta}: \mathbb{R} \longrightarrow \mathbb{R}$ tal que

$$\tilde{\eta}(x) = \begin{cases} 1 & se \ x \le 0 \\ (x-1)^2 & se \ x \in [1/2, 1] \\ 0 & se \ x > 1 \end{cases}$$

e é definida sobre (0,1/2) de tal maneira que $\tilde{\eta}$ é uma função não-crescente de classe C^1 . Para $\varepsilon > 0$, defina $\tilde{\eta}_{\varepsilon}(x) := \tilde{\eta}(\frac{x}{\varepsilon})$. Observe que existe uma constante M que não depende de ε , tal que

$$\frac{|\tilde{\eta}_{\varepsilon}'(x)|}{\tilde{\eta}_{\varepsilon}(x)} \leq \frac{M}{\varepsilon^2} \quad \text{para todo } x < \varepsilon$$

Agora, seja $\varepsilon > 0$ tal que

$$\tilde{\omega}_{\varepsilon} := \left\{ x \in \mathcal{M} \; ; \; d\left(x, \bigcup_{i=0}^{k} \partial \mathcal{M}_{0i}\right) < \varepsilon \right\}$$

é uma vizinhança tubular de $\bigcup_{i=0}^k \partial \mathcal{M}_{0i}$ e $\omega_{\varepsilon} := \tilde{\omega_{\varepsilon}} \cup \mathcal{M}_2$ está contido em \mathcal{M}_* . Defina $\eta_{\varepsilon} : \mathcal{M} \longrightarrow \mathbb{R}$ onde

$$\eta_{\varepsilon}(x) = \begin{cases} 1 & se \quad x \in \mathcal{M}_2\\ \tilde{\eta}_{\varepsilon}(d(x, \mathcal{M})) & se \quad x \in \omega_{\varepsilon} \setminus \mathcal{M}_2\\ 0 & \text{caso contrário} \end{cases}$$

 η_{ε} é uma função de classe C^1 em \mathcal{M} , pois $\partial \mathcal{M}_2$ e $\partial \omega_{\varepsilon}$ são regulares (suaves). Note também que

$$\frac{\left|\nabla_{T}\tilde{\eta}_{\varepsilon}(x)\right|^{2}}{\tilde{\eta}_{\varepsilon}(x)} = \frac{\left|\tilde{\eta}'_{\varepsilon}(d(x,\mathcal{M}_{2}))\right|}{\tilde{\eta}_{\varepsilon}(d(x,\mathcal{M}_{2}))} \le \frac{M}{\varepsilon^{2}}$$
(3.34)

para todo $x \in \omega_{\varepsilon} \setminus \mathcal{M}_2$. Em particular, $\frac{|\nabla_T \tilde{\eta}_{\varepsilon}(x)|}{\tilde{\eta}_{\varepsilon}(x)}^2 \in L^{\infty}(\omega_{\varepsilon})$.

Tomando $\xi = \eta_{\varepsilon}$ na identidade (3.25), obtemos

$$\int_{0}^{T} \int_{\omega_{\varepsilon}} \eta_{\varepsilon} |\nabla_{T} u|^{2} d\mathcal{M} dt = -\left[\int_{\omega_{\varepsilon}} u_{t} u \eta_{\varepsilon} d\mathcal{M} \right]_{0}^{T} + \underbrace{\int_{0}^{T} \int_{\omega_{\varepsilon}} \eta_{\varepsilon} |u_{t}|^{2} d\mathcal{M} dt}_{K_{1}} - \underbrace{\int_{0}^{T} \int_{\omega_{\varepsilon}} u (\nabla_{T} u \cdot \nabla_{T} \eta_{\varepsilon}) d\mathcal{M} dt}_{K_{3}} - \underbrace{\int_{0}^{T} \int_{\omega_{\varepsilon}} a(x) g(u_{t}) u \eta_{\varepsilon} d\mathcal{M} dt}_{K_{2}}.$$
(3.35)

Na sequência, faremos as estimativas dos termos do lado direito da igualdade (3.35). Estimativa para $K_1 := \int_0^T \int_{\omega_{\varepsilon}} \eta_{\varepsilon} |u_t|^2 d\mathcal{M}dt$ De (3.3), como $\eta_{\varepsilon} \leq 1$ e $\omega_{\varepsilon} \subset \mathcal{M}_*$, onde a dissipação ocorre, deduzimos

$$|K_1| \le \int_0^T \int_{\omega_{\varepsilon}} |u_t|^2 d\mathcal{M}dt \le a_0^{-1} \int_0^T \int_{\mathcal{M}} a(x)|u_t|^2 d\mathcal{M}dt$$
(3.36)

Estimativa para $K_2 := \int_0^T \int_{\omega_{\varepsilon}} a(x)g(u_t)u\eta_{\varepsilon}d\mathcal{M}dt$

Pelas desigualdades de Cauchy-Schwarz e $ab \leq \frac{1}{4\alpha}a^2 + \alpha b^2$, temos

$$|K_{2}| \leq \int_{0}^{T} \int_{\mathcal{M}} a(x)|g(u_{t})||u|d\mathcal{M}dt$$

$$\leq \frac{1}{4\alpha} \int_{0}^{T} \int_{\mathcal{M}} (a(x))^{2}|g(u_{t})|^{2}d\mathcal{M}dt + \alpha \int_{0}^{T} \int_{\mathcal{M}} |u|^{2}d\mathcal{M}dt$$

$$\leq \frac{\|a\|_{L^{\infty}(\mathcal{M})}}{4\alpha} \int_{0}^{T} \int_{\mathcal{M}} a(x)|g(u_{t})|^{2}d\mathcal{M}dt + 2\alpha\lambda_{1}^{-1} \int_{0}^{T} E(t)dt \qquad (3.37)$$

onde λ_1 é a constante proveniente da desigualdade de Poincaré e α é uma constante positiva arbitrária.

Estimativa para
$$K_3 := \int_0^T \int_{\mathcal{U}_{\varepsilon}} u(\nabla_T u \cdot \nabla_T \eta_{\varepsilon}) d\mathcal{M} dt$$

Considerando (3.34) e aplicando a desigualdade de Cauchy-Schwarz, podemos escrever

$$|K_{3}| \leq \frac{1}{2} \int_{0}^{T} \left[\int_{\omega_{\varepsilon}} \eta_{\varepsilon} |\nabla_{T} u|^{2} d\mathcal{M} + \int_{\omega_{\varepsilon}} \frac{|\nabla_{T} \eta_{\varepsilon}|^{2} |u|^{2}}{\eta_{\varepsilon}} d\mathcal{M} \right] dt$$

$$\leq \frac{1}{2} \int_{0}^{T} \left[\int_{\omega_{\varepsilon}} \eta_{\varepsilon} |\nabla_{T} u|^{2} d\mathcal{M} dt + \frac{M}{\varepsilon^{2}} \int_{\omega_{\varepsilon}} |u|^{2} d\mathcal{M} \right] dt \qquad (3.38)$$

combinando de (3.35) à (3.38), obtemos a seguinte desigualdade

$$\frac{1}{2} \int_{0}^{T} \int_{\omega_{\varepsilon}} \eta_{\varepsilon} |\nabla_{T} u|^{2} d\mathcal{M} dt \leq |\mathcal{Y}| + \frac{\|a\|_{L^{\infty}(\mathcal{M})}}{4\alpha} \int_{0}^{T} \int_{\mathcal{M}} a(x) |g(u_{t})|^{2} d\mathcal{M} dt
+ 2\alpha \lambda^{-1} \int_{0}^{T} E(t) dt + \frac{M}{2\varepsilon^{2}} \int_{0}^{T} \int_{\omega_{\varepsilon}} |u|^{2} d\mathcal{M} dt
+ a_{0}^{-1} \int_{0}^{T} \int_{\mathcal{M}} a(x) |u_{t}|^{2} d\mathcal{M} dt$$
(3.39)

onde

$$\mathcal{Y} := -\left[\int_{\omega_{\varepsilon}} u_t u \eta_{\varepsilon} d\mathcal{M}\right]_0^T \tag{3.40}$$

Assim combinando (3.39) com (3.34) e tendo em mente que

$$\frac{1}{2} \int_0^T \int_{\mathcal{M}_2} |\nabla_T u|^2 d\mathcal{M} dt \le \frac{1}{2} \int_0^T \int_{\omega_{\varepsilon}} \eta_{\varepsilon} |\nabla_T u|^2 d\mathcal{M} dt$$

temos

$$\frac{1}{2} \int_{0}^{T} E(t)dt \leq |\chi| + C_{1} \int_{0}^{T} \int_{\mathcal{M}} \left[a(x)|g(u_{t})|^{2} + a(x)|u_{t}|^{2} \right] d\mathcal{M}dt
+ C_{1} \int_{0}^{T} \int_{\mathcal{M}_{2}} |\nabla_{T}u|^{2} d\mathcal{M}dt
\leq |\chi| + C_{1} \int_{0}^{T} \int_{\mathcal{M}} \left[a(x)|g(u_{t})|^{2} + a(x)|u_{t}|^{2} \right] d\mathcal{M}dt
+ 2C_{1}|\mathcal{Y}| + \frac{2C_{1}||a||_{L^{\infty}(\mathcal{M})}}{4\alpha} \int_{0}^{T} \int_{\mathcal{M}} a(x)|g(u_{t})|^{2} d\mathcal{M}dt
+ 4C_{1}\alpha\lambda^{-1} \int_{0}^{T} E(t)dt + \frac{C_{1}M}{\varepsilon^{2}} \int_{0}^{T} \int_{\omega_{\varepsilon}} |u|^{2} d\mathcal{M}dt
+ 2C_{1}a_{0}^{-1} \int_{0}^{T} \int_{\mathcal{M}} a(x)|u_{t}|^{2} d\mathcal{M}dt$$
(3.41)

Agora tomando $\alpha = \frac{1}{16C_1\lambda^{-1}}$ em (3.41), obtemos

$$\frac{1}{4} \int_{0}^{T} E(t)dt \leq |\chi| + 2C_{1}|\mathcal{Y}|
+ \max\left\{C_{1}, 8C_{1}\lambda^{-1}||a||_{L^{\infty}(\mathcal{M})}, 2C_{1}a_{0}^{-1}\right\} \int_{0}^{T} \int_{\mathcal{M}} \left[a(x)|g(u_{t})|^{2} + a(x)|u_{t}|^{2}\right] d\mathcal{M}dt
+ \frac{C_{1}M}{\varepsilon^{2}} \int_{0}^{T} \int_{\mathcal{M}_{\varepsilon}} |u|^{2} d\mathcal{M}dt$$
(3.42)

Por um lado, de (3.30), (3.40) e (2.57), chegamos à seguinte estimativa

$$|\chi| + 2C_1|\mathcal{Y}| \leq C(E(0) + E(T))$$

$$= C\left[2E(T) + \int_0^T \int_{\mathcal{M}} a(x)g(u_t)u_t d\mathcal{M}\right]$$
(3.43)

onde C é uma constante positiva que também depende de R.

Então (3.42) e (3.43) implicam que

$$TE(T) \leq \int_{0}^{T} E(t)dt$$

$$\leq C_{*}E(T) + C_{*} \left[\int_{0}^{T} \int_{\mathcal{M}} \left[a(x)|g(u_{t})|^{2} + a(x)|u_{t}|^{2} \right] d\mathcal{M}dt \right]$$

$$+ C_{*} \int_{0}^{T} \int_{\omega_{\varepsilon}} |u|^{2} d\mathcal{M}dt \qquad (3.44)$$

onde C_* é uma constante positiva que depende de $\{a_0, ||a||_{L^{\infty}(\mathcal{M})}, \lambda, R, |H|, ||B||, M/\varepsilon^2\}$

Nossa intenção agora é estimar o último termo do lado direito da desigualdade (3.44). Afim de fazer isto, considere o seguinte lema, onde T_0 é uma constante positiva suficientemente grande, para nosso propósito.

Lema 3.8. Sob as hipóteses do Teorema 3.1 e para todo $T > T_0$, existe uma constante positiva $C(T_0, E(0))$ tal que, se (u, u_t) é uma solução de (3.2) com dado iniciais fracos, então temos

$$\int_0^T \int_{\mathcal{M}} |u|^2 d\mathcal{M}dt \le C(T_0, E(0)) \left[\int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_t) + a(x)u_t^2 \right) d\mathcal{M}dt \right]$$
(3.45)

Demonstração: Argumentaremos por contradição. Para simplificarmos denotaremos $u' := u_t$. Suponha que (3.45) não é verificado e seja $\{u_k(0), u_k'(0)\}$ uma sequência de dados iniciais onde as soluções correspondentes $\{u_k\}_{k\in\mathbb{N}}$ de (3.2), com $E_k(0)$ uniformemente limitada em k, verifique

$$\lim_{k \to +\infty} \frac{\int_0^T \|u_k(t)\|_{L^2(\mathcal{M})}^2 dt}{\int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_k') + a(x)u_k'^2 \right) d\mathcal{M} dt} = +\infty$$
(3.46)

ou seja

$$\lim_{k \to +\infty} \frac{\int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_k') + a(x)u_k'^2 \right) d\mathcal{M} dt}{\int_0^T \|u_k(t)\|_{L^2(\mathcal{M})}^2 dt} = 0$$
(3.47)

Como $E_k(t) \leq E_k(0) \leq L$, onde L é uma constante positiva, obtemos uma subsequência, ainda denotada por $\{u_k\}$, que verifica as seguintes convergências

$$u_k \rightharpoonup u$$
 fracamente em $H^1(\Sigma_T)$ (3.48)

$$u_k \stackrel{\star}{\rightharpoonup} u$$
 fraco estrela em $L^{\infty}(0, T; V)$ (3.49)

$$u'_k \stackrel{\star}{\rightharpoonup} u'$$
 fraco estrela em $L^{\infty}(0, T; L^2(\mathcal{M}))$ (3.50)

empregando argumentos de compacidade resulta que $\{u_k\}$ possui uma subsequência tal que

$$u_k \to u$$
 fortemente em $L^2(0, T; L^2(\mathcal{M}))$ (3.51)

Neste ponto dividiremos a prova em dois casos, a saber: quando $u \neq 0$ e u = 0.

(i) caso $(I): u \neq 0$

Observe que de (3.47) e (3.51), temos

$$\lim_{k \to +\infty} \int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_k') + a(x)u_k'^2 \right) = 0$$
 (3.52)

passando o limite na equação, quando $k \to +\infty$, temos

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u = 0 & \text{em } \mathcal{M} \times (0, T) \\ u_{t} = 0 & \text{em } \mathcal{M}_{*} \times (0, T) \end{cases}$$
(3.53)

e para $u_t = v$, nós obtemos, no sentido distribucional

$$\begin{cases} v_{tt} - \Delta_{\mathcal{M}} v = 0 & \text{em } \mathcal{M} \times (0, T) \\ v = 0 & \text{em } \mathcal{M}_* \times (0, T) \end{cases}$$

Agora utilizando um resultado de unicidade da referência [43], concluímos que $v \equiv 0$, isto é, $u_t = 0$ retornando a (3.53), obtemos a seguinte equação elíptica para todo $t \in (0,T)$, dada por

$$\Delta_{\mathcal{M}}u=0$$
 sobre \mathcal{M}

multiplicando esta equação por u, e aplicando a fórmula de Green, obtemos

$$0 = -\int_{\mathcal{M}} u \Delta_{\mathcal{M}} u d\mathcal{M} = \int_{\mathcal{M}} |\nabla_T u|^2 d\mathcal{M} \ge c_p ||u||_{L^2(\mathcal{M})}$$

onde c_p provem da desigualdade de Poincaré, o que implica u=0, o que é uma contradição.

(ii) caso (II): u = 0

Definamos

$$c_k := \left[\int_0^T \int_{\mathcal{M}} |u_k|^2 d\mathcal{M} dt \right]^{\frac{1}{2}}$$
 (3.54)

е

$$\bar{u}_k := \frac{1}{c_k} u_k \tag{3.55}$$

logo ocorre o seguinte

$$\int_{0}^{T} \int_{\mathcal{M}} |\bar{u}_{k}|^{2} d\mathcal{M} dt = \int_{0}^{T} \int_{\mathcal{M}} \frac{|u_{k}|^{2}}{c_{k}^{2}} d\mathcal{M} dt = \frac{1}{c_{k}^{2}} \int_{0}^{T} \int_{\mathcal{M}} |u_{k}|^{2} d\mathcal{M} dt = 1$$
 (3.56)

Sendo
$$\overline{E}_k(t) := \frac{1}{2} \int_{\mathcal{M}} |\bar{u}_k'|^2 + \frac{1}{2} \int_{\mathcal{M}} |\nabla \bar{u}_k|^2 d\mathcal{M}$$
 então
$$\overline{E}_k(t) = \frac{E_k(t)}{c_i^2} \tag{3.57}$$

Relembrando (3.34), para T suficientemente grande, obtemos

$$E(T) \le \hat{C} \left[\int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_t) + a(x)u_t^2 \right) d\mathcal{M} dt + \int_0^T \int_{\mathcal{M}} |u|^2 d\mathcal{M} dt \right]$$

empregando a identidade

$$E(T) - E(0) = -\int_0^T \int_{\mathcal{M}} a(x)g(u_t)u_t d\mathcal{M}dt$$

nós podemos escrever

$$E(t) \leq E(0) = E(T) + \int_0^T \int_{\mathcal{M}} a(x)g(u_t)u_t d\mathcal{M}dt$$

$$\leq \tilde{C} \left[\int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_t) + a(x)u_t^2 \right) d\mathcal{M}dt + \int_0^T \int_{\mathcal{M}} |u|^2 d\mathcal{M}dt \right]$$

para todo $t \in (0,T)$, com T suficientemente grande.

Da última desigualdade e de (3.57), obtemos

$$\overline{E}_k(t) = \frac{E_k(t)}{c_k^2} \le \left[\frac{\int_0^T \int_{\mathcal{M}} \left(a(x)g^2(u_k') + a(x)u_k'^2 \right) d\mathcal{M}dt}{\int_0^T \int_{\mathcal{M}} |u_k|^2 d\mathcal{M}dt} + 1 \right]$$
(3.58)

De (3.47) e (3.58), concluímos que existe uma constante positiva \tilde{M} tal que

$$\overline{E}_k(t) = \frac{E_K(t)}{c_k^2} \le \tilde{M}, \, \forall t \in [0, T], \, \forall k \in \mathbb{N}$$

isto é,

$$\frac{1}{2} \int_{\mathcal{M}} |\bar{u}_k'|^2 d\mathcal{M} + \frac{1}{2} \int_{\mathcal{M}} |\bar{u}_k'|^2 d\mathcal{M} \le \tilde{M} , \forall t \in [0, T], \forall k \in \mathbb{N}.$$
 (3.59)

Logo existe uma subsequência de $\{\bar{u}_k\}$, que ainda denotaremos da mesma forma, tal que

$$\bar{u}_k \stackrel{\star}{\rightharpoonup} \bar{u}$$
 fraco estrela em $L^{\infty}(0, T; V)$ (3.60)

$$\bar{u}'_k \stackrel{\star}{\rightharpoonup} \bar{u}'$$
 fraco estrela em $L^{\infty}(0, T; L^2(\mathcal{M}))$ (3.61)

$$\bar{u}_k \to \bar{u} \text{ fortemente em } L^{\infty}(0, T; V)$$
 (3.62)

Observemos que de (3.52) deduzimos que

$$\lim_{k \to +\infty} \int_0^T \int_{\mathcal{M}} a(x)g^2(u_k')d\mathcal{M}dt = 0 \quad \text{e } \lim_{k \to +\infty} \int_0^T \int_{\mathcal{M}} a(x)u_k'^2d\mathcal{M}dt = 0 \tag{3.63}$$

Além disso \bar{u}_k satisfaz a equação

$$\bar{u}_k'' - \Delta_{\mathcal{M}}\bar{u}_k + a(x)\frac{g(u_k')}{c_k} = 0 \text{ em } \mathcal{M} \times (0, T)$$

Passando o limite quando $k \to +\infty$, levando em consideração as convergências acima, obtemos

$$\begin{cases}
\bar{u}'' - \Delta_{\mathcal{M}}\bar{u} = 0 & \text{em } \mathcal{M} \times (0, T) \\
\bar{u}' = 0 & \text{em } \mathcal{M}_* \times (0, T).
\end{cases}$$
(3.64)

Então, $v = \bar{u}_t$ verifica, no sentido distribucional, o seguinte

$$\begin{cases} v_{tt} - \Delta_{\mathcal{M}} v = 0 & \text{em } \mathcal{M} \\ v = 0 & \text{em } \mathcal{M}_* \end{cases}$$

Aplicando novamente o resultado de unicidade da referência [43], obtemos que $v = \bar{u}_t = 0$. Retornando à (3.64), temos, para quase todo $t \in (0, T)$, que

$$\Delta_{\mathcal{M}}\bar{u} = 0 \text{ em } \mathcal{M}$$

donde concluímos que $\bar{u}=0$, o que uma contradição em vista de (3.56) e (3.62). Com isso, concluímos a prova do lema. \Box

Notemos que as desigualdades (3.44) e (3.45) levam ao seguinte resultado.

Proposição 3.9. Para T > 0 suficientemente grande, a solução (u, u_t) de (3.2) satisfaz,

$$E(T) \le C \int_0^T \int_{\mathcal{M}} \left[a(x)|u_t|^2 + a(x)|g(u_t)|^2 \right] d\mathcal{M}dt$$
 (3.65)

onde a constante $C = C(T_0, E(0), ||a||_{L^{\infty}(\mathcal{M})}, a_0, \lambda, R, ||B||, M/\varepsilon^2).$

3.2.2 Conclusão do Teorema 3.1

No que segue vamos concluir a demonstração do Teorema 3.1.Seja

$$\Sigma_{\alpha} = \{(t, x) \in \Sigma; |u_t| > 1\} \quad \text{e} \quad \Sigma_{\beta} = \Sigma \setminus \Sigma_{\alpha}$$

Por um lado, usando ítem (iii) da hipótese 3.1, nós obtemos

$$\int_{\Sigma_{\alpha}} a(x) \left((g(u_t)^2 + (u_t)^2 \right) d\Sigma_{\alpha} \leq \int_{\Sigma_{\alpha}} a(x) \left(k^{-1} |g(u_t)u_t| + K |g(u_t)u_t| \right) d\Sigma_{\alpha}
= (k^{-1} + K) \int_{\Sigma_{\alpha}} a(x) g(u_t) u_t d\Sigma_{\alpha}$$
(3.66)

Por outro lado, de (3.4) e do fato de que h é côncava e estritamente crescente, com h(0)=0, e observando que

$$h\left(\frac{a(x)}{1+\|a\|_{L^{\infty}(\mathcal{M})}}g(u_t)u_t\right) \le h\left(a(x)g(u_t)u_t\right)$$

temos

$$\int_{\Sigma_{\beta}} a(x) \left((g(u_t)^2 + (u_t)^2 \right) d\Sigma_{\beta} \leq (1 + \|a\|_{L^{\infty}(\mathcal{M})}) \int_{\Sigma_{\beta}} \frac{a(x)}{(1 + \|a\|_{L^{\infty}(\mathcal{M})})} h(g(u_t)u_t) d\Sigma_{\beta}
\leq (1 + \|a\|_{L^{\infty}(\mathcal{M})}) \int_{\Sigma_{\beta}} h\left(\frac{a(x)}{1 + \|a\|_{L^{\infty}(\mathcal{M})}} g(u_t)u_t \right) d\Sigma_{\beta}
\leq (1 + \|a\|_{L^{\infty}(\mathcal{M})}) \int_{\Sigma_{\beta}} h(a(x)g(u_t)u_t) d\Sigma_{\beta}$$

Então pela Desigualdade de Jensen, obtemos

$$(1 + ||a||_{L^{\infty}(\mathcal{M})}) \int_{\Sigma_{\beta}} h(a(x)g(u_{t})u_{t})d\Sigma_{\beta}$$

$$\leq (1 + ||a||_{L^{\infty}(\mathcal{M})})med(\Sigma)h\left(\frac{1}{med(\Sigma)}\int_{\Sigma_{\beta}} h(a(x)g(u_{t})u_{t})d\Sigma\right)$$

$$= (1 + ||a||_{L^{\infty}(\mathcal{M})})med(\Sigma)r\left(\int_{\Sigma} a(x)g(u_{t})u_{t}d\Sigma\right)$$
(3.67)

onde $r(s) = h\left(\frac{s}{med(\Sigma)}\right)$ foi definida em (3.5).

Assim de (3.66) e (3.67), obtemos

$$\int_{\Sigma} a(x) \left((g(u_t)^2 + (u_t)^2 \right) d\Sigma \leq (k^{-1} + K) \int_{\Sigma} a(x) g(u_t) u_t d\Sigma + (1 + ||a||_{L^{\infty}(\mathcal{M})}) med(\Sigma) r \left(\int_{\Sigma} a(x) g(u_t) u_t d\Sigma \right)$$
(3.68)

Agora da proposição 3.9 e (3.68), temos

$$E(T) \leq (1 + ||a||_{L^{\infty}(\mathcal{M})})C\left[\frac{K_0}{(1 + ||a||_{L^{\infty}(\mathcal{M})})}\int_{\Sigma} a(x)g(u_t)u_t d\Sigma + med(\Sigma)r\left(\int_{\Sigma} a(x)g(u_t)u_t d\Sigma\right)\right]$$
(3.69)

onde $K_0 = k^{-1} + K$.

Tomando

$$L = \frac{1}{Cmed(\Sigma)(1 + ||a||_{L^{\infty}(\mathcal{M})})}$$
$$c = \frac{K_0}{med(\Sigma)(1 + ||a||_{L^{\infty}(\mathcal{M})})}$$

e aplicando p em ambos lados de (3.69) resulta

$$p(E(T)) \leq p\left(\frac{1}{L}(cI+r)\left(\int_{\Sigma} a(x)g(u_t)u_t d\Sigma\right)\right)$$

$$= (cI+r)^{-1}\left(L\left(\frac{1}{L}(cI+r)\right)\left(\int_{\Sigma} a(x)g(u_t)u_t d\Sigma\right)\right)$$

$$= \int_{\Sigma} a(x)g(u_t)u_t d\Sigma = E(0) - E(T)$$
(3.70)

onde p foi definida em (3.6).

Para o fim da prova do Teorema 3.1, nós fazemos uso do seguinte resultado.

Lema 3.10. Seja p uma função crescente, positiva, tal que p(0) = 0. Como p é crescente podemos definir uma função crescente q, $q(x) = x - (I+p)^{-1}(x)$. Considere uma sequência s_m de números positivos que satisfaz

$$s_{m+1} + p(s_{m+1}) \le s_m \tag{3.71}$$

Então, $s_m \leq S(m)$, onde S(t) é a solução da equação diferencial

$$\frac{d}{dt}S(t) + q(S(t)) = 0 , S(0) = s_0$$
(3.72)

Além disso, se p(x) > 0 para x > 0, então $\lim_{t\to\infty} S(t) = 0$.

Demonstração: Faremos a prova por indução sobre m.

De fato, para m = 0, segue de (3.71) que

$$(I+p)s_1 \le s_0 \tag{3.73}$$

Desde que $(I+p)^{-1}$ é crescente temos que

$$s_1 \le (I+p)^{-1}(s_0) = s_0 - s_0 + (I+p)^{-1}(s_0)$$

= $s_0 - q(s_0)$ (3.74)

Por outro lado, como q é uma função positiva, a solução S(t) de (3.72) é tal que

$$S(t) \le S(\tau) , \ \forall t \ge \tau \ge 0. \tag{3.75}$$

Integrando (3.72) de 0 a 1 obtemos:

$$S(1) - S(0) + \int_0^1 q(S(\tau))d\tau = 0$$

como q é crescente, de (3.75) e da hipótese $S(0) = s_0$, resulta

$$S(1) = S(0) - \int_0^1 q(S(\tau))d\tau$$

$$\geq S(0) - \int_0^1 q(S(0))d\tau$$

$$= S(0) - q(S(0))$$

$$= (I - q)(S(0))$$

$$= (I + p)^{-1}(S(0)) = (I + p)^{-1}(s_0)$$

$$= s_0 - q(s_0) \geq s_1$$

portanto $S(1) \geq s_1$.

Suponha agora que o resultado, seja verdadeiro para m, ou seja, $S(m) \geq s_m$. Assim, para m+1 de (3.71), temos

$$(I+p)s_{m+1} \le s_m \tag{3.76}$$

como $(I+p)^{-1}$ é crescente, resulta:

$$s_{m+1} \le s_m - q(s_m) \tag{3.77}$$

Agora, integrando (3.72) de $m \ a \ m + 1$, obtemos

$$S(m+1) - S(m) + \int_{m}^{m+1} q(S(\tau))d\tau = 0$$

Desde que q é crescente, de (3.75) e da hipótese indutiva, obtemos

$$S(m+1) \geq S(m) - \int_{m}^{m+1} q(S(\tau))d\tau$$

$$= S(m) - q(S(m)) = (I-q)S(m)$$

$$= (I+p)^{-1}S(m) \geq (I+p)^{-1}s_{m}$$

$$= s_{m} - q(s_{m}). \tag{3.78}$$

De (3.77) e (3.78) resulta

$$S(m+1) \ge s_{m+1}$$

o que prova o desejado.

Para finalizarmos a prova do lema, resta-nos provar que se p(x)>0 para x>0 então $\lim_{t\to +\infty} S(t)=0.$

De fato, por (3.72), para cada $\overline{T} > 0$, temos

$$S(\overline{T}) - S(0) + \int_0^{\overline{T}} q(S(\overline{T}))d\tau = 0$$

e por (3.75) resulta

$$S(\overline{T}) \le S(0) - \int_0^{\overline{T}} q(S(\overline{T})) d\tau$$

ou seja

$$S(\overline{T}) \le S(0) - \overline{T}q(S(T)) \tag{3.79}$$

Por (3.75) temos que S(t) é uma função monótona não crescente e limitada inferiormente pelo 0, pois $S(m) \geq s_m$, para todo $m \in \mathbb{N}$ e s_m são números positivos. Seja $C = \inf \{S(t); t \geq 0\}$. Observe que $C = \lim_{t \to +\infty} S(t)$. Mostraremos que C = 0.

De fato, suponhamos por absurdo que C > 0. Logo de (3.79), obtemos que

$$S(\overline{T}) \le S(0) - \overline{T}q(C), \ \forall \overline{T} > 0$$
 (3.80)

como p(x) > 0 para x > 0 obtemos que q(C) > 0, pois caso contrário, se $\exists x_0 > 0$ tal que $q(x_0) \le 0$, segue que

$$x_0 - (I+p)^{-1}(x_0) \le 0 \Leftrightarrow x_0 \le (I+p)^{-1}(x_0) \Leftrightarrow (I+p)(x_0) \le x_0$$

ou ainda, se, e somente se $p(x_0) \le 0$, o que é uma absurdo.

Portanto, tomando $\overline{T} \in \mathbb{N}$ tal que $S(0) < \overline{T}q(C)$ resulta de (3.80) que $S(\overline{T}) < 0$ o que é um absurdo. Então concluímos que $\lim_{t \to +\infty} S(t) = 0$.

Agora em (3.70) substituiremos T (respectivamente 0) por m(T+1) (respectivamente mt), obtemos

$$E(m(T+1)) + p(E(m(T+1))) \le E(mT)$$
, para $m = 0, 1, ...$

Aplicando o lema 3.10, com $s_m = E(mT)$, obtemos

$$E(mT) < S(m), m = 0, 1, \dots$$

Finalmente, usando a dissipatividade de E(t) que é proveniente da relação (2.57), pondo $t=mT+\tau,\,0\leq\tau\leq T,$ resulta

$$E(t) \le E(mT) \le S(m) = S\left(\frac{t-\tau}{T}\right) \le S\left(\frac{t}{T}-1\right)$$
, para $t > T$

com isto, está completa a prova do Teorema 3.1.

3.3 Computações Efetivas das Taxas de Decaimento dadas pelo pelo Teorema 3.1

O algoritmo para computações de taxas de decaimento dadas pelo Teorema 3.1 é bem geral e estabelece taxas de decaimento explícitas sem qualquer restrição sobre o crescimento da dissipação g na origem. Com efeito, este algoritmo dá taxas de decaimento

exponencial quando o "damping" é limitado por baixo por uma função linear e taxas de decaimento algébricas para dissipações polinomiais que decaem a zero na origem. Ilustraremos, a seguir, como outros casos podem ser tratados. Particularizando, um pouco, a classe de dissipações não lineares somos capazes de obter uma descrição explícita das taxas de decaimento.

De modo a prosseguir, notemos que o comportamento da função q(s) na origem (esta é a única região relevante para taxas de decaimento) é assintoticamente equivalente a $(h)^{-1}(s)$, onde, recordamos, a função côncava e monótona crescente h(s) é determinada pela relação $s^2 + g^2(s) \le h(s(g(s))), s \le s_0 < 1$. O fato de tal função sempre existir segue da monotonia de g(s), como provado em Lasiecka e Tataru [18]. Então, o único propósito é determinar a estrutura de $(h)^{-1}$ perto da origem. Também, é suficiente restringir nossa análise a valores positivos de s. De acordo com o teorema 3.1 a equação a ser considerada é $S_t + c_0(h)^{-1}(c_1S) = 0$, S(0) = E(0) e a solução desta equação nos dá uma limitação assintótica para a energia. Ou seja, temos $E(t) \le C(E(0))S(t)$, para $t > T_0$. As constantes c_0, c_1 provem do fato que $q(s) \sim (CI + h)^{-1}(s)$ na origem. De fato, o comportamento assintótico é uma consequência direta do algoritmo (3.6), (3.7),

$$q = I - (I+p)^{-1} = p \circ (I+p)^{-1} = p \circ [(p^{-1}+I) \circ p]^{-1}$$
$$= p \circ [(K^{-1}(CI+r)+I) \circ p]^{-1} = K^{-1}(CI+r)^{-1}. \tag{3.1}$$

Uma vez que $h(s) \ge cs$, perto da origem, para alguma constante positiva c, (3.1) implica $q(s) \sim (CI+h)^{-1}(s) \ge c_1(h)^{-1}$ perto da origem. Portanto, o comportamento assintótico da energia é dirigido pela seguinte EDO $S_t + c_0(h)^{-1}(c_1S) = 0, S(0) = E(0)$, como afirmado acima.

De modo a ser mais específico consideraremos o caso: g(s) decai para zero mais rápido que qualquer função linear. Neste caso é suficiente determinar h(s) da desigualdade $s^2 \leq h(sg(s))$.

Resolvendo explicitamente $s^2 = h(sg(s))$ obtemos que $(h)^{-1}(s) = \sqrt{s}g(\sqrt{s})$. Para esta função ser "elegível" devemos verificar sua concavidade, ou equivalentemente, a con-

vexidade $(h)^{-1}(s) = \sqrt{s}g(\sqrt{s})$ que necessita considerar uma pequena vizinhança à direita da origem.

Sumarizando esta discussão e desprezando-se as constantes c_0, c_1 obtemos:

Corolário 3.11. Se assumirmos que g'(0) = 0 (i.e o "damping" é "fraco"-superlinear na origem) e a função $\sqrt{s}g(\sqrt{s})$ é convexa para $s \in [0, s_0]$, onde s_0 pode ser arbitrariamente pequeno, a equação diferencial a ser resolvida torna-se

$$S_t + \sqrt{S}g(\sqrt{S}) = 0, S(0) = E(0) = S_0,$$

e $E(t) \leq C(E(0))S(t)$. Mais especificamente, integrando a equação diferencial obtemos com $G(S, S_0) \equiv \int_{\sqrt{S_0}}^{\sqrt{S}} \frac{1}{g(u)} du$, $S(t) = G^{-1}(-\frac{t}{2}, S_0)$.

Nós ilustraremos o procedimento com diversos exemplos. Para a claridade nós normalizamos as constantes de modo que não apareçam nas expressões.

• Exemplo 1 Seja g(s) = s. A função s é convexa sempre. Então resolvemos a seguinte EDO:

$$S_t + S = 0, S(0) = E(0) = S_0,$$
 (3.2)

Pela fórmula dada no corolário, obtemos

$$G(s, S_0) = \int_{\sqrt{S_0}}^{\sqrt{s}} u^{-1} du = \ln\left(\frac{s}{S_0}\right)^{\frac{1}{2}}$$

Daí $G^{-1}(t) = e^{-\gamma t}$. Deste modo, obtemos

$$E(t) \le C(E(0))e^{-\gamma t}$$

• Exemplo 2 Consideramos $g(s)=s^p,\, p>1$ na origem. A função $s^{\frac{p+1}{2}}$ é convexa para $p\geq 1$ resolvemos

$$S_t + S^{\frac{p+1}{2}} = 0. (3.3)$$

Esta equação pode ser integrada diretamente, é claro. Entretanto, para o caso da ilustração da fórmula geral nós encontramos

$$G(s, S_0) = \int_{\sqrt{S_0}}^{\sqrt{s}} u^{-p} du = \frac{1}{1 - p} \left[s^{\frac{-p+1}{2}} - S_0^{\frac{-p+1}{2}} \right].$$

Aqui
$$G^{-1}(t) = [S_0^{\frac{-p+1}{2}} - t(1-p)]^{\frac{2}{-p+1}}.$$
 Assim

$$E(t) \le C(E(0))[E(0)^{\frac{-p+1}{2}} + t(p-1)]^{\frac{2}{-p+1}}.$$

naturalmente, as mesmas taxas de decaimento podiam ser obtidas pela integração direta de (3.3).

• Exemplo 3 Tomamos $g(s)=s^3e^{-\frac{1}{s^2}}$ para s perto da origem. Desde que a função $s^2e^{-\frac{1}{s}}$ é convexa numa vizinhança da origem nós resolvemos

$$S_t + S^2 e^{-\frac{1}{S}} = 0. (3.4)$$

E neste caso
$$G(S, S_0) = -1/2[e^{-\frac{1}{S}} - e^{-\frac{1}{S_0}}]$$
 e $G^{-1}(t, S_0) = [ln(e^{\frac{1}{S_0}} - 2t)]^{-1}$. Daí

$$E(t) \le C(E(0))[ln(e^{\frac{1}{E(0)}} + t)]^{-1},$$

a solução poderia igualmente ser obtida diretamente da integração (3.4).

• Exemplo 4 Considere $g(s) = s|s|e^{-\frac{1}{|s|}}$ para s perto de zero. Sendo a função $s^{3/2}e^{-\frac{1}{\sqrt{s}}}$ convexa sobre $[0, s_0]$ para algum s_0 pequeno, somos conduzidos à equação diferencial

$$S_t + S^{3/2} e^{-\frac{1}{\sqrt{S}}} = 0. (3.5)$$

A função $G(S, S_0)$ é dada por $G(S, S_0) = -[e^{\frac{1}{\sqrt{S}}} - e^{\frac{1}{\sqrt{S_0}}}]$. Daí $G^{-1}(t, S_0) = \frac{1}{\ln^2[e^{\frac{1}{\sqrt{S_0}}} - t]}$ e

$$E(t) \le C(E(0)) \frac{1}{\ln^2[e^{\frac{1}{\sqrt{E(0)}}} + \frac{1}{2}t]}.$$

3.4 Apêndice

3.4.1 Cut-off Intrínseco

No que segue construiremos uma função auxiliar η_{ε} em uma vizinhança específica de $\mathcal{M}_2:=\mathcal{M}\setminus \cup_{i=1}^k\mathcal{M}_{0i}$.

Inicialmente, definamos $\tilde{\eta}: \mathbb{R} \to \mathbb{R}$ tal que

$$\tilde{\eta}(x) := \begin{cases} 1 & se \ x \le 0 \\ (x-1)^2 & se \ x \in [1/2, 1] \\ 0 & se \ x > 1 \end{cases}$$
 (3.6)

e é definida em (0,1/2) de modo que $\tilde{\eta}$ é não-crescente e de classe C^1 , conforme ilustra a figura abaixo:

(vou colocar figura)

Para $\varepsilon > 0$ definamos

$$\tilde{\eta}_{\varepsilon}(x) := \tilde{\eta}\left(\frac{x}{\varepsilon}\right) \; ; \; x \in \mathbb{R}$$
 (3.7)

como $\tilde{\eta} \in C^1(\mathbb{R})$ e $\tilde{\eta} \neq 0$ para x < 1 segue que

$$x \longmapsto \frac{[\tilde{\eta}'(x)]^2}{\tilde{\eta}(x)}$$
 (3.8)

é contínua em $(-\infty, 1)$.

Sendo $\tilde{\eta}(x) = 1$ em $(-\infty, 0)$ então $\tilde{\eta}'(x) = 0$ em $(-\infty, 0)$ e portanto:

$$\frac{[\tilde{\eta}'(x)]^2}{\tilde{\eta}(x)} = \frac{0}{1} = 0 \text{ em } (-\infty, 0)$$
 (3.9)

No intervalo compacto [0,1/2] existe $M_1>0$ tal que

$$\frac{[\tilde{\eta}'(x)]^2}{\tilde{\eta}(x)} \le M_1 \; ; \quad \forall x \in [0, 1/2]$$
 (3.10)

No intervalo]1/2,1[temos que $\tilde{\eta}(x)=(x-1)^2$ e portanto

$$\frac{[\tilde{\eta}'(x)]^2}{\tilde{\eta}(x)} = \frac{4(x-1)^2}{(x-1)^2} = 4 \quad ; \quad \forall x \in (1/2, 1)$$
(3.11)

Pondo $M = \max\{M_1, 4\}$ resulta de (3.9), (3.10) e (3.11), que

$$\frac{[\tilde{\eta}'(x)]^2}{\tilde{\eta}(x)} \le M \quad ; \quad \forall x \in (-\infty, 1) \,. \tag{3.12}$$

Da definição de $\tilde{\eta}_{\varepsilon}$ notemos que

$$\frac{\left[\tilde{\eta}_{\varepsilon}'(x)\right]^{2}}{\tilde{\eta}_{\varepsilon}(x)} = \frac{\left\{\left[\tilde{\eta}\left(\frac{x}{\varepsilon}\right)\right]'\right\}^{2}}{\tilde{\eta}\left(\frac{x}{\varepsilon}\right)} = \frac{\left[\tilde{\eta}'\left(\frac{x}{\varepsilon}\right)\frac{1}{\varepsilon}\right]^{2}}{\tilde{\eta}\left(\frac{x}{\varepsilon}\right)} = \frac{1}{\varepsilon^{2}} \frac{\left[\tilde{\eta}'\left(\frac{x}{\varepsilon}\right)\right]^{2}}{\tilde{\eta}\left(\frac{x}{\varepsilon}\right)}$$
(3.13)

e de (3.12) resulta que, se $x<\varepsilon$ então $\frac{x}{\varepsilon}<1$ e portanto

$$\frac{\left[\tilde{\eta}'\left(\frac{x}{\varepsilon}\right)\right]^2}{\tilde{\eta}\left(\frac{x}{\varepsilon}\right)} \le M \quad ; \quad \forall x < \varepsilon \tag{3.14}$$

De (3.13) e (3.14) vem então que

$$\frac{[\tilde{\eta}_{\varepsilon}'(x)]^2}{\tilde{\eta}_{\varepsilon}(x)} \le \frac{M}{\varepsilon^2} \quad ; \quad \text{se } x < \varepsilon \tag{3.15}$$

Para o que vem a seguir, convém introduzir uma noção de distância entre dois pontos de uma superfície \mathcal{M} que dependa apenas da geometria intrínseca de \mathcal{M} e não da maneira como \mathcal{M} está imersa em \mathbb{R}^3 .

Seja $\alpha:[a,b]\to\mathcal{M}$ uma curva parametrizada diferenciável por partes, ligando $\alpha(a)$ a $\alpha(b)$. O comprimento $l(\alpha)$ de α é definido como

$$l(\alpha) = \sum_{i=0}^{k} \int_{t_i}^{t_i+1} |\alpha'(t)| dt$$

Proposição 3.12. Dados dois pontos $p, q \in \mathcal{M}$ de uma superfície regular (conexa) \mathcal{M} , existe uma curva parametrizada diferenciável por partes liquado p a q.

Demonstração: Ver [36] □

Sejam agora $p, q \in \mathcal{M}$ dois pontos de uma superfície regular \mathcal{M} . Denotaremos por $\alpha_{p,q}$ uma curva parametrizada regular por partes ligando p a q, e por $l(\alpha_{p,q})$ o seu comprimento. A proposição 3.12 mostra que o conjunto de todas as $\alpha_{p,q}$ é não-vazio. Assim podemos definir o seguinte:

Definição 3.13. A distância (intrínseca) d(p,q) do ponto $p \in \mathcal{M}$ ao ponto $q \in \mathcal{M}$ é o número

$$d(p,q) = \inf l(\alpha_{p,q})$$

onde o inf é tomado sobre todas as curvas diferenciáveis por partes ligando p a q.

Proposição 3.14. Seja $p_0 \in \mathcal{M}$ um ponto. Então a função $f : \mathcal{M} \to \mathbb{R}$ dada por $f(p) = d(p_0, p), p \in \mathcal{M}$, é contínua em \mathcal{M} .

Demonstração: Temos que mostrar que para cada $p \in \mathcal{M}$, dado $\varepsilon > 0$, existe $\delta > 0$ tal que se $q \in B_{\delta}(p) \cap \mathcal{M}$, onde $B_{\delta}(p)$ é uma bola aberta de \mathbb{R}^3 centrada em p e com raio δ , então $|f(p) - f(q)| = |d(p_0, p) - d(p_0, q)| < \varepsilon$.

Com efeito, seja $\varepsilon' < \varepsilon$ tal que a aplicação exponencial $\exp_p : T_p \mathcal{M} \to \mathcal{M}$ é um difeomorfismo no disco $B_{\varepsilon'}(0) \subset T_p \mathcal{M}$, onde 0 é a origem de $T_p \mathcal{M}$, e coloque $\exp_p(B_{\varepsilon'}(0)) = V$. Evidentemente, V é um subconjunto aberto em \mathcal{M} ; logo existe uma bola aberta $B_{\delta}(p)$ em \mathbb{R}^3 tal que $B_{\delta}(p) \cap \mathcal{M} \subset V$. Assim, se $q \in B_{\delta}(p) \cap \mathcal{M}$,

$$|d(p_0, p) - d(p_0, q)| \le d(p, q) < \varepsilon' < \varepsilon$$

o que completa a demonstração.

O difeomorfismo da proposição 3.14 permite-nos identificar V com uma bola (disco) $B_{\varepsilon}(0) \subset T_p \mathcal{M}$. O resultado acima mostra que a função $d: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ induz uma estrutura de espaço métrico em \mathcal{M} . Por outro lado, como subconjunto de um espaço métrico, $\mathcal{M} \subset \mathbb{R}^3$ tem uma métrica induzida \bar{d} . Um fato importante é que estas duas métricas determinam a mesma topologia, isto é, a mesma família de subconjuntos abertos em \mathcal{M} . Isto segue do fato que $\exp_p: T_p \mathcal{M} \to \mathcal{M}$ é um difeomorfismo local.

Proposição 3.15. Uma superfície orientável em \mathbb{R}^3 é a imagem inversa de um valor regular de alguma função diferenciável.

Demonstração: Ver [36].

Seja \mathcal{M} uma superfície orientável, é possível escolher, sobre a reta normal passando por $p \in \mathcal{M}$, um intervalo aberto I_p em torno de p e de comprimento, digamos, $2\varepsilon_p$ (ε_p varia com p) de tal modo que se $p \neq q \in \mathcal{M}$, então $I_p \cap I_q = \emptyset$. Assim, a união $\cup I_p$, $p \in \mathcal{M}$, constitui um conjunto aberto V de \mathbb{R}^3 , que contém \mathcal{M} e tem a propriedade de que por cada ponto de V passa uma única reta normal a \mathcal{M} ; V é chamado uma vizinhança tubular de \mathcal{M} .

Proposição 3.16. Suponha a existência de uma vizinhança tubular $V \subset \mathbb{R}^3$ de uma superfície orientável $\mathcal{M} \subset \mathbb{R}^3$, e escolha uma orientação para \mathcal{M} . Então a função

 $g:V\to\mathbb{R}$, definida como sendo a distância orientada de um ponto de V ao pé da perpendicular da única reta normal passando por esse ponto, é diferenciável em uma vizinhança de \mathcal{M} e tem zero como um valor regular.

Demonstração: Ver [36].

Agora seja $\varepsilon > 0$ tal que

$$\tilde{\omega}_{\varepsilon} := \{ x \in \mathcal{M} \; ; \; d(x, \bigcup_{i=1}^{k} \partial \mathcal{M}_{0i}) < \varepsilon \}$$

é uma vizinhança tubular de $\bigcup_{i=1}^k \partial \mathcal{M}_{0i}$ e $\omega_{\varepsilon} := \tilde{\omega}_{\varepsilon} \cup \mathcal{M}_2$ está contida em \mathcal{M}_* .

Definimos

$$\eta_{\varepsilon}(x) = \begin{cases}
1 & \text{se } x \in \mathcal{M}_2 \\
\tilde{\eta}_{\varepsilon}(d(x, \mathcal{M}_2)) & \text{se } x \in \omega_{\varepsilon} \setminus \mathcal{M}_2 \\
0 & \text{se } x \in \mathcal{M} \setminus (\mathcal{M}_2 \cup (\omega_{\varepsilon} \setminus \mathcal{M}_2))
\end{cases}$$
(3.16)

Vejamos a figura ilustrativa, (Admitamos uma única vizinhança umbílica $\mathcal{M}_{0i} = \mathcal{M}_0$)

(colocar figura)

Assim, se $x \in \omega_{\varepsilon} \setminus \mathcal{M}_2$ então $d(x, \bigcup_{i=1}^k \partial \mathcal{M}_{0i}) < \varepsilon$ e portanto $d(x, \partial \mathcal{M}_2) < \varepsilon$ o que implica que $d(x, \mathcal{M}_2) < \varepsilon$. Logo de (3.15) obtemos

$$\frac{\left|\tilde{\eta}_{\varepsilon}'(d(x,\mathcal{M}_2))\right|^2}{\tilde{\eta}(d(x,\mathcal{M}_2))} \le \frac{M}{\varepsilon^2} \quad ; \quad \forall x \in \omega_{\varepsilon} \setminus \mathcal{M}_2 \tag{3.17}$$

No próximo passo vamos estimar $\frac{|\nabla_T\eta_\varepsilon(x)|^2}{\eta_\varepsilon(x)}.$ Antes notemos que

$$\nabla_T \eta_{\varepsilon}(x) = \nabla_T (\tilde{\eta}'_{\varepsilon}(d(x, \mathcal{M}_2))) = \tilde{\eta}'_{\varepsilon}(d(x, \mathcal{M}_2)) \cdot \nabla_T d(x, \mathcal{M}_2) = \tilde{\eta}'_{\varepsilon}(d(x, \mathcal{M}_2))$$
(3.18)

pois $\nabla_T d(x, \mathcal{M}_2) = 1$ em vizinhanças tubulares.

Combinando (3.17) e (3.18), resulta que

$$\frac{|\nabla_T \eta_{\varepsilon}(x)|^2}{\eta_{\varepsilon}(x)} = \frac{|\tilde{\eta}'_{\varepsilon}(d(x, \mathcal{M}_2))|^2}{\tilde{\eta}(d(x, \mathcal{M}_2))} \le \frac{M}{\varepsilon^2} \quad ; \quad \forall x \in \omega_{\varepsilon} \setminus \mathcal{M}_2$$
 (3.19)

No caso em que $x \in \mathcal{M}_2$ a desigualdade acima segue trivialmente para ω_{ε} . Logo,

$$\frac{|\nabla_T \eta_{\varepsilon}(x)|^2}{\eta_{\varepsilon}(x)} \in L^{\infty}(\omega_{\varepsilon}).$$

- [1] ADAMS, R. A. Sobolev Spaces. New York: Academic Press, 1975.
- [2] ALABAU BOUSSOUIRA F., Convexity and weighted inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim. 51(1), (2005), 61-105.
- [3] ANDRADE D., CAVALCANTI M. M., DOMINGOS CAVALCANTI V. N., OQUENDO H.P. Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds. J. Comput. Anal. Appl. Vol.8, n.3,p. 173-193, 2006.
- [4] ANDRADE D., CAVALCANTI M. M., DOMINGOS CAVALCANTI V. N., OQUENDO H.P.Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds. J. Comput. Anal. Appl. Vol.8, n.3,p. 287-301, 2006.
- [5] BRÉZIS, H.: Análisis Funcional, Teoría y Aplicaciones. Alianza Editorial, S.A., Madrid, 1984.
- [6] BRÉZIS, H.: Operateurs Maximaux Monotones et Semigroups de Contractions dans les Spaces de Hilbert. North Holland Publishing Co., Amsterdam, 1973.

[7] BRÉZIS, H, Autumn Course On Semigoups, Theory and Applications. Lecture Notes taken by L. COHEN. International Center for Theoretical Physics, Triest, 1984.

- [8] CAVALCANTI M. M., DOMINGOS CAVALCANTI V. N., FUKUOKA R. and SORIANO J. A., Uniform stabilization of the wave equation on compact surfaces and locally distributed damping, - Methods Appl. Anal. (2009) (to appear).
- [9] CAVALCANTI M. M., DOMINGOS CAVALCANTI V. N. and LASIECKA I. Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. Journal of Differential Equations, 236(2007),407-459.
- [10] CAVALCANTI M. M., DOMINGOS CAVALCANTI V. N., Existence and asymptotic stability for evolution problems on manifolds whith damping and source terms, J. Math. Anal. Appl. 291(1), (2004), 109-127.
- [11] CAVALCANTI, M. M., DOMINGOS CAVALCANTI, V. N.: Iniciação à Teoria das distribuições e aos Espaços de Sobolev. Volume I, DMA/UEM, Maringá, 2000.
- [12] CAVALCANTI, M. M., DOMINGOS CAVALCANTI, V. N.: Iniciação à Teoria das distribuições e aos Espaços de Sobolev. Volume II, DMA/UEM, Maringá, 2000.
- [13] CODDINGTON, E.; LEVINSON, N. Theory of Ordinary Differential Equations, Mac Graw-Hill, New York, 1955.
- [14] DAUTRAY, R., LIONS, J. L.:Mathematical Analysis and Numerical Methods for Science and technology., Vol. II. Springer-Verlang Berlin Heidelberg, New York, 1990.

[15] EVANS, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, A.M.S.

- [16] GOMES, A.M. Semigrupos de Operadores Lineares e Aplicações às Equações de Evolução. Rio de Janeiro: UFRJ. IM, 2000.
- [17] KESAVAN, S. Topic in Functional Analysis and Applications. John Wiley and Sons, New Dehli, 1989.
- [18] LASIECKA, I., TATARU, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Lecture Notes in Pure and Applied Maths, 142, Dekker, New York, 1993.
- [19] LIONS, J. L.: Contrôlabilité Exacte Pertubations et Stabilisation de Systèmes Distribués, Masson, Paris, 1988.
- [20] LIONS, J.L., MAGENES. E.: Non-Homogeneous boudary Value Problems ande Applications., Vol. I. Springer-Verlag Berlin Heidelberg, New York, 1972.
- [21] MEDEIROS, L. A.: Iniciação aos Espaços de Sobolev e Aplicações. Textos e Métodos Matemáticos 16, Rio de Janeiro, IM-UFRJ. 1983.
- [22] MEDEIROS, L. A., MELLO, E.A.: A Integral de Lebesgue. Textos e Métodos Matemáticos 18, Rio de Janeiro, IM-UFRJ. 1989.
- [23] MEDEIROS, L. A., RIVERA, P.H.: Espaços de Sobolev e Aplicações às Equações Diferenciais Parciais. Textos e Metodos Matemáticos 9, Rio de Janeiro, IM-UFRJ. 1977.
- [24] MEDEIROS, L. A., MILLA MIRANDA, M.: Espaços de Sobolev (iniciação aos problemas elípticos não homogêneos). Rio de Janeiro, IM-UFRJ. 2000.
- [25] MILLA MIRANDA, M.; SAN GIL JUTUCA, L. P. Existence and boundary stability of solutions for the Kirchhoff equation, Commun. Partial Differential Equation, v.24, n.9-10, p.1759-1800, 1999.

[26] MILLA MIRANDA, M.: Traço para o Dual dos Espaços de Sobolev. Seminário Brasileiro de Análise, Rio de Janeiro. Atas 28-Seminário Brasileiro de Análise, p. 171-191, 1988.

- [27] MILLA MIRANDA, M.: Análise espectral em espaços de Hilbert. Instituto de Matemática UFRJ, Rio de Janeiro, 1990.
- [28] MIYAGAKI, O.H., Equações elípticas modeladas em variedades riemannianas: Uma introdução, UFCG-UFPB, Campina Grande-João Pessoa, Paraíba, janeiro de 2004.
- [29] NAKAO, M.: Decay of solutions to the wave equation with a local nonlinear dissipation. Math. Ann., 305(1996), 403-417.
- [30] NAKAO, M.: Decay of solutions to the wave equation with a local degenerate nonlinear dissipation. Israel J. of Maths. 95(1996), 25-42.
- [31] RAVIART, P.A., THOMAS, J.M., Introduction à Analyse Numérique des Équations Aux Dérivéis Partielles. Masson, Paris, 1983.
- [32] RIVERA, J.E. M. Teoria das Distribuições e Equações Diferenciais Parciais. Textos Avançados, Rio de Janeiro, Petrópolis, LNCC. 1999.
- [33] SIMON, J.: Compact Sets in the Space L^p(0, T; B). (Annali di Matematica pura ed aplicata, (IV) Vol. CXLVI, 1987, pp.65-96).
- [34] BARDOS C., LEBEAU G. e RAUCH J., Control and stabilisation de l'equation des ondes, Appendix II in J.L Lions controlabité exacte des systèmes distribués, Collection RMA, Vol.8, Masson, Paris, 1988.
- [35] CHRISTIANSON H., Semiclassical non-concetration near hyperbolic orbits. (2006)-Journal of Functional Analysis (to appear)
- [36] DO CARMO M., Differential Geometry of Curves and Surfaces, Prentice Hall, New Jersey, 1976.

[37] HITRIK M., Expansions and eigenfrequencies for damped wave equations, Journées "Équations aux Dérivées Patielles" (Plestin-les-Grèves, 2001), Exp. No. VI, 10pp., Univ. Nantes, Nantes, 2001.

- [38] LASIECKA I. e TRIGGIANI R., Uniform stabilization of the wave equation with Derichelet or Neumann feedback control without geometric conditions, Appl. Math. Optim., 25(1992), 189-224.
- [39] LIU K., Localy distributed control and damping for conservative systems. SIAM J. Control and Optimization 35(5) (1997), 1574-1590.
- [40] MARTINEZ P., A new method to obtain deacay rates estimates for dissipative systems with localized damping. Rev. Mat. Complutense 12(1), (1999), 251-283.
- [41] NEDELEC J. C., Ondes acoustiques eléctromagnétiques, equations intégrales. Cours de DEA, Ecole polytechnique, Palaiseau. France 1996.
- [42] RAUCH-M J. TAYLOR, Decay of solutions to n ondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28(4), (1975), 501-523.
- [43] TRIGGIANI R. e YAO P.F., Calerman estimates with no lower-Oder terms for general Riemannian wave equations. Global uniquenees and observability in one shot, Appl. Math. and Optim 46(Sept./Dec. 2002), 331-375.
- [44] TOUNDYKOV D., Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted and critical exponents source trems under mixed boundary, Nonlinear Analysis T.M.A. (to appear)
- [45] ZEIDLER, E.: Nonlinear Functional Analysis and its Aplications. Vol 2A:Linear monotone operators, Springer-Verlag, (1990).

[46] ZUAZUA, E.: Exponential decay for the semilinear wave equation whith localized distributed Damping. Commun. Partial Diff. Equations, 15(2), (1990), 205-235.

[47] ZUAZUA, E.: Exponential decay for the semilinear wave equation whith localized damping in unbounded domains. J.Math. Pures et appl. 70, p. 513-529, 1992.