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Abstract

The present thesis aims to introduce the concept of invariance pressure for contin-

uous and discrete-time control systems, a measure which generalizes the invariance

entropy and can be understood as a weighted average of the total quantity of informa-

tion that the controls acting on the system produces such that their trajectories starting

in a subset K ⊂ Q remain in the given set Q.

We present the main properties of this quantity, as well as lower bounds (when

K and Q has positive Riemannian volume) and upper bounds (when Q is a control

set). At the end of the work, we establish two variations of the concept of invariance

pressure, which we call inner invariance pressure and topological feedback pressure,

and we show the equivalence between these quantities for strongly invariant sets, and

relate them to the transmission data rates.

Keywords: Control systems, Control sets, Invariance entropy, Invariance pressure.



Resumo

A presente tese tem por objetivo introduzir o conceito de pressão de invariância

para sistemas de controle em tempo contínuo e discreto, uma medida que generaliza a

entropia de invariância e pode ser entendida como um valor ponderado da quantidade

total de informação que os controles que atuam sobre o sistema fornecem para que as

trajetórias começando em um subconjunto K ⊂ Q permaneça no dado conjunto Q.

Apresentaremos as principais propriedades desta quantidade, além de limitantes

inferiores (quando K e Q tem volume Riemanniano positivo) e superiores (quando

Q é um conjunto controlável). No fim do trabalho, estabelecemos duas variações da

pressão de invariância, as quais chamamos de pressão de invariância interna e pressão

topológica de feedback, e mostramos a equivalência entre estas quantias para conjun-

tos fortemente invariantes, além de relacioná-las com taxa de transmissão de dados.

Palavras-chave: Sistemas de controle, Conjuntos controláveis, Entropia de invar-

iância, Pressão de invariância.
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INTRODUCTION

In 1865, the German physicist and mathematician Rudolf Clausius, one of the pio-

neers of thermodynamics, developed the concept of entropy, which is a measure of the

degree of "disorder" of a thermodynamic system in equilibrium. Since then, other con-

cepts of entropy have been proposed in several areas of science, such as in Information

Theory where the American engineer Claude Shannon defines entropy as the average

information associated with an alphabet A whose elements are symbols transmitted

by communication channel.

On the one hand, along the development of ergodic theory, the Soviet mathemati-

cians Andrey Kolmogorov and Yakov Sinai, inspired by works of Shannon, proposed

in 1958-1959 (cf. Kolmogorov [29], [30] and Sinai [35]) the well-known (metric) entropy

hµ(T ) of a measurable map T : X → X on a probability space X that preserves a mea-

sure of probability µ. Their objective were to provide an ergodic equivalence invariant

that, for example, would allow us to distinguish two Bernoulli shifts.

As early as 1965, Adler, Konheim and McAndrew [2] introduced the topological

entropy htop(T ) of a continuous map T : X → X on a compact topological space X

whose definition is given in terms of open covers of X . The mathematician Rufus

Bowen provided, in 1971, a new definition of topological entropy of a continuous map

T on a metric space (X, d) (not necessarily compact) via separable and spanning sets

(see Bowen [4]). Such a definition allows us to interpret htop(T ) as a precise numerical

measure of the global exponential complexity in the orbital structure of a topological

dynamic system.
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In order to establish a concrete relationship between hµ(T ) and htop(T ), in the years

1970 and 1971, Dinaburg [18], [19] and Goodman [20] have proved the variational prin-

ciple for continuous maps T over a compact metric space X :

htop(T ) = sup{hµ(T )},

where the supremum is taken over all measures of probability µ invariant by T .

On the other hand, the centenary theory of Equilibrium Statistical Mechanics was

consolidating. Briefly, this theory aims to understand, through a probabilistic ap-

proach, the relations between the salient macroscopic characteristics observed in a sys-

tem of particles at equilibrium and the properties of their microscopic constituents. We

can visualize this in the Ising model which, in the magnetization study, is described

by a lattice that is a finite subset Λ of Zd where at each point x of the lattice we can

associating the values ±1 (−1 means that the particle x has spin down, +1 means that

the spin points up).

Thus, a system configuration is an element of the configuration space Ω := {−1,+1}Λ,

and an equilibrium state, mathematically represented by a measure of probability in Ω,

describes a macroscopic configuration of the system that can be physically observed,

such as Gibbs free energy, heat or pressure, many of which can be viewed as weighted

averages of the quantities defined in terms of the constituents of the system (the sum

of the energies of the molecules, for example). In addition, the equilibrium states are

characterized by minimizing these macroscopic configurations.

Since ergodic theorems depend on a previously fixed invariant measure by the sys-

tem, one of the problems of Equilibrium Statistical Mechanics is to choose an invariant

measure to analyze the system in order to apply the results of ergodic theory. Another

relevant problem in this area is that: as macroscopic configurations of the system, such

as pressure, can be seen mathematically as weighted averages, what weight over the

constituents of the system should we use?

To exemplify what we are saying, in the Ising model, suppose that the set Ω is finite

and write Ω = {ω1, . . . , ωn}. Let f(ωi) be the total energy of the system in the state ωi.

In this case, f would be a weight assigned to the configuration ωi of the molecules of
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the system and

µ(ωi) :=
e−βf(ωi)

Z(β)

is called the Gibbs measure, which minimizes the free energy of the system in question,

where β = (kBTs)
−1 with kB being the Boltzman constant, Ts the temperature of the

system in equilibrium and Z(β) =
n∑
i=1

e−βf(ωi).

An excellent tool for the problem above (where weights and probability measures

are considering) was developed by the Belgian physicist and mathematician David Ru-

elle who introduced in [34] the concept of pressure for expansive actions on compact

subsets of Zd and proved the variational principle for the pressure, thus providing a

good way of choosing measures that minimize macroscopic configurations of parti-

cles systems, which are precisely the states of equilibrium. Then, this concept was

generalized by Peter Walters in [38] for continuous maps on compact metric spaces,

formalizing what we know today as topological pressure of a continuous maps. Since

then, this idea of pressure has been adapted in other contexts, such as Pesin and Pitskel

[33], Bogenschütz [3], Zeng, Yan and Zhang [22] and [41].

Already in the control systems environment, the seminal article of Nair, Evans,

Mareels and Moran [32] gave rise to the concept of topological feedback entropy as an

inherent measure for the rate at which a control system generates stability information.

This concept was defined for discrete-time control systems in terms of invariant covers

of a given subset K of the state space X , based on ideas similar to those presented in

[2] for continuous maps on compact spaces.

Inspired by the concept of topological feedback entropy, in 2009 Colonius and Kawan

[9] introduced the invariance entropy of a admissible pair (K,Q) for continuous-time

control systems in terms of spanning sets, similarly to [4]. This quantity measures the

exponential growth rate of the minimal number of different control functions sufficient

for that the trajectories of the system to remain in Q when they start in K ⊂ Q, as time

tends to infinity. The relation between these two types of entropy was established in

[10] by Colonius, Kawan and Nair, where it is shown that these two quantities coin-

cide in the case of strongly invariant sets. The invariance entropy has been widely

studied since then, as we can see in Kawan [25], da Silva [13], [14], Colonius, Fukuoka

& Santana [8] and da Silva & Kawan [15], [16].



CONTENTS 16

In this work we introduce the invariance pressure for control systems in both dis-

crete and continuous-time. In order to give an overall outline of invariance pressure,

consider the continuous-time control system

ẋ(t) = F (x(t), ω(t)), ω ∈ U

on a differentiable manifold M . Denoting by U ⊂ Rm the set where the controls ω :

R → U take values, we can consider a weight f : U → R on these control values

in the following way: given ω ∈ U and τ > 0, let (Sτf)(ω) :=
∫ τ

0
f(ω(t))dt. Thus, if

(K,Q) is an admissible pair and S ⊂ U is a (τ,K,Q)-spanning set, then
∑
ω∈S

e(Sτf)(ω)

represents the total quantity of weighted information that the controls in S produce up

to time τ so that the system remains inQwhen it starts inK. This information depends

obviously on the weight f and what the control functions represents in the system.

In order to optimize this quantity, that is, the weighted information necessary for

accomplishing the control task on [0, τ ], consider

aτ (f,K,Q) := inf

{∑
ω∈S

e(Sτf)(ω); S (τ,K,Q)-spanning set

}
.

The invariance pressure of the system is defined as

Pinv(f,K,Q) := lim sup
τ→∞

1

τ
log aτ (f,K,Q)

and it can be interpreted as the exponential growth rate of the quantity of total weighted

information produced by the control functions acting on the system in order to its

trajectories remains in Q, once started in K, as time tends to infinity. When we do

not weight the control values, that is, if f ≡ 0, where 0 is the null function, then

Pinv(0, K,Q) coincides with the (strict) invariance entropy defined in [9], hence the in-

variance pressure is a generalization of the concept of invariance entropy.

This work is divided as follows: In Chapter 1 we have established the basic notions

for the development of the thesis, such as differentiable manifolds, control systems and

invariance entropy. In this sense, both continuous and discrete-time control systems

are presented, as well as the invariance entropy for each of these systems with their

respective variations, such as the topological feedback entropy and the outer and inner
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invariance entropy.

In Chapter 2 we introduce the main concept of this work: the invariance pressure.

In this chapter we will study the pressure only for continuous-time control systems

and explore the basic and elementary properties which this quantity has in relation to

each of its arguments, making a parallel with the properties of the topological pressure

for dynamic systems, in addition to proving the invariance of this amount by time-

invariant conjugacy.

Also for continuous-time, in Chapter 3 we derive some results on the computation

of invariance pressure Pinv(f,K,Q) of a admissible pair (K,Q) and f : U → R, where

Q satisfies some particular control properties, such as isolated sets, inner control sets

and control sets. The last section of this chapter is devoted to presenting some lower

bounds for Pinv(f,K,Q) for systems over a Riemannian manifold, where both K and

Q have positive Riemannian volume.

In Chapter 4 of the present thesis aims to prove the Theorem 4.2.3 that generalizes

the Theorem 3.1 of [10] that relates the topological feedback entropy and the invariance

entropy of strongly invariant sets. For this, we define, in the first two sections, the

concepts of topological feedback pressure and the inner invariance pressure in order

to generalize those concepts of entropy, respectively. The last section of this chapter

generalizes the concept of data rate presented in [32] in order to establish a relationship

between data rates and topological feedback pressure.



CHAPTER 1

PRELIMINARIES

This chapter is dedicated to establish some notions on discrete and continuous-time

control systems and invariance entropy, which are the main objects of this work. Since

the space state of a continuous-time control system is a smooth manifold or, in some

cases, a Riemannian manifold, in the first section we provide the necessary background

on these objects which is needed in this work and in the second section we present a

short comment about topological pressure witch generalizes the topological entropy

(for dynamical systems) as well as the invariance pressure generalizes the invariance

entropy for control systems.

1.1 Differentiable Manifolds

The main goal of this section is to establish the notations and the elementary notions

of differentiable manifolds necessary for the present work. The main references used

in this section are Abraham et al. [1], Lima [31] and do Carmo [17].

Let M be a topological space. A chart for M is a pair (φ, U) such that U is an open

subset of M and the map φ : U → V is a homeomorphism onto an open subset V of Rd

for some d ∈ N, which is called the dimension of (φ, U). A chart (φ, U) is said to be a

chart around x ∈ M if x ∈ U . A family of d-dimensional cards A = {(φα, Uα)}α∈Λ on

M is called a C∞-atlas of dimension d if
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i) {Uα}α∈Λ covers of M ;

ii) For all α, β ∈ Λ, the transition map φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is of

class C∞.

A d-dimensional chart (φ, U) forM is admissible relatively to an atlasA = {(φα, Uα)}α∈Λ

of dimension d on M if for all α ∈ Λ with U ∩ Uα 6= ∅, the transition maps φ ◦ φ−1
α and

φα ◦ φ−1 are of class C∞. We say that a d-dimensional atlas A = {(φα, Uα)}α∈Λ on M is

maximal if all admissible d-dimensional charts relatively to A are contained in A.

A pair (M,A) is a d-dimensional differentiable manifold (of class C∞) or simply

manifold if the set M a second-countable Hausdorff space provided with a maximal

C∞-atlas of dimension d. The natural number d is called the dimension of M and A is

a differentiable structure on M .

It is easy to see that the d-dimensional euclidean space Rd is a manifold. Every open

subset N of a d-dimensional manifold (M,A) is itself a d-dimensional manifold with

atlas {(φ|U∩N , U ∩ N); (φ, U) ∈ A}. Given two differentiable manifolds (M,A) and

(N,B) of dimensions k and l , respectively, their Cartesian product M × N (endowed

with the product topology) becomes a (k + l)-dimensional manifold with the maximal

atlas which contains the product atlas {(φ ◦ ψ,U × V ); (φ, U) ∈ A and (ψ, V ) ∈ B}. A

manifold of this type is called a product manifold.

A map f : M → N between two differentiable manifolds (M,A) and (N,B) is

differentiable at x ∈ M if there are charts (φ, U) ∈ A around x and (ψ, V ) ∈ B around

f(x) such that f(U) ⊂ V and the local representation ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) of f

is differentiable (of class C∞) on φ(x). We can see that this definition does not depend

on the choice of charts. We say that f : M → N is differentiable if it is at all x ∈ M . A

differentiable bijection f : M → N whose inverse f−1 : N → M is also differentiable is

called diffeomorphism.

A curve on a manifold M is a differentiable map c : I → M defined on an open

interval I of R. Let x be an element of a d-dimensional manifold (M,A) and denote

by Cx the set of all curves c : I → M such that 0 ∈ I and c(0) = x. Given c ∈ Cx
and a chart (φ, U) ∈ A around x, whenever we write φ ◦ c we are admitting that the

domain of c was consciously reduced to a smaller open interval I ′, containing 0, such
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that c(I ′) ⊂ U . On Cx we can define the following equivalence relation ∼:

c1 ∼ c2 ⇔ ∃ (φ, U) ∈ A ;
d

dt
(φ ◦ c1)(t)

∣∣∣
t=0

=
d

dt
(φ ◦ c2)(t)

∣∣∣
t=0
.

It is worth noting that the equality d
dt

(φ ◦ c1)(t)|t=0 = d
dt

(φ ◦ c2)(t)|t=0 is independent on

the choice of chart. Then we say that the equivalence class [c] of a curve c ∈ Cx is a

tangent vector at x. The quotient set Cx/ ∼ is indicated by TxM and is called tangent

space at x.

The set TxM has a natural structure of a real vector space by requiring that given

(φ, U) ∈ A, the well-defined bijection φ̄ : TxM → Rd, φ̄([c]) = d
dt

(φ ◦ c)(t)|t=0 is an

isomorphism. The operations so defined does not depend on the choice of (φ, U). The

preimages of the standard basis vectors e1, . . . , e
d ∈ Rd under φ̄ form a basis of TxM .

They are denoted by ∂
∂x1
, . . . , ∂

∂xd
.

The set

TM :=
⋃
x∈M

({x} × TxM)

is the tangent bundle of M and it can be endowed with an atlas in a canonical way

such that it becomes a 2d-dimensional manifold (see [1, Section 3.3]).

Given a differentiable map f : M → N between the manifolds M and N , the

derivative of f at x ∈ M is the well-defined linear map dxf : TxM → Tf(x)N given

by dxf([c]) = [f ◦ c].

A vector field on a manifold M is a map X : M → TM such that for each x ∈ M ,

X(x) ∈ TxM . The vector field X on M is differentiable (of class C∞) if X : M → TM

is differentiable as a map between the manifolds M and TM . This concept allows us

to study ordinary differential equations on a manifold: given a vector field X on M ,

there is an ordinary differential equation associated to X in the natural way

d

dt
x(t) = X(x(t)).

A Riemannian metric on a connected manifold M is a correspondence g which

associates to each point x ∈ M an inner product g(·, ·)x, that is, a symmetric, bi-

linear, positive-definite form on the tangent space TxM which varies differentiably

in the following sense: if (φ, U) is a chart around x with y = φ−1(x1, . . . , xd) and
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dyφ
−1(0, . . . , 1, . . . , 0) = ∂

∂xi
(y), then gi,j(x1, . . . , xd) := g( ∂

∂xi
(y), ∂

∂xj
(y))y is a differen-

tiable function on φ(U). It is not difficult to see that this definition does not depend on

the choice of chart. It is possible to show that all differentiable manifold has a Rieman-

nian metric. A Riemannian manifold is a manifold M endowed with a Riemannian

metric g, and we represent it by a pair (M, g).

Let (M, g) be a d-dimensional Riemannian manifold. To each chart (φ, U) of M one

can associate d3 differentiable functions Γki,j : U → R by

Γki,j :=
gk,l
2

(
∂gi,l
∂φj

+
∂gj,l
∂φi

+
∂gi,j
∂φl

)
.

These functions are called the Christoffel symbols of (M, g) with respect to the

chart (φ, U) and they satisfies Γki,j = Γkj,i. Using the Christoffel symbols, one can define

the Levi–Civita connection associated with (M, g), which is an operator assigning to a

pair (X, Y ) of vector fields a vector field ∇XY . Locally, we can write any vector fields

X and Y as X =
d∑
i=1

X i ∂

∂xi
and Y =

d∑
i=1

Y j ∂

∂xj
. Then∇XY is defined by

(∇XY )(x) = X i(x)

(
Y j(x)Γki,j(x)

∂

∂xk
(x) +

∂Y j

∂xi
(x)

∂

∂xj
(x)

)
.

Hence, given a vector field X on M , we can assign its covariant derivative at x ∈

M , ∇X(x) : TxM → TxM by ∇X(x)v := (∇vX)(x). Moreover, one can define the

divergence of a vector fieldX onM by divX(x) := tr (∇X(x)) which is a differentiable

function from M to R.

The Riemannian volume of a Borel set A of a d-dimensional Riemannian manifold

(M, g) which is contained in the domain of a chart (φ, U) is defined as

vol(A) :=

∫
φ(A)

√
det [gi,j(φ−1(x))]dx,

where the integral is the usual Lebesgue integral on Rd. This definition is independent

of the chosen chart. Then vol is extended naturally to all Borel subsets of M and it

holds that ∫
f(A)

ϕ dvol =

∫
A

ϕ ◦ f |det df |dvol,

for all diffeomorphism f : M →M and all integrable function ϕ : M → R.
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Remark 1.1.1. For a real nonsingular d× d matrix A, |det A| is given in terms of the product

between the singular values of A (see [12, Section 11.3]).

1.2 Topological Pressure

In this section we present the concept of topological pressure of a continuous map

T : X → X , where (X, d) is a compact metric space. The main references that we use

here are Walters [39] and Viana and Oliveira [37].

Given n ∈ N and ε > 0, we say that a subset F of X is a (n, ε)-spanning set for X

with respect to T if

∀ x ∈ X, ∃ y ∈ F ; d(T ix, T iy) < ε, ∀ i ∈ {0, . . . , n− 1}.

Denote by C(X,R) the space of real-valued continuous function of X . For f ∈

C(X,R) and n ∈ N, we denote
∑n−1

i=0 f(T ix) by (Snf)(x). Then, if f ∈ C(X,R), n ∈ N

and ε > 0 put

Qn(T, f, ε) := inf

{∑
x∈F

e(Snf)(x); F is a (n, ε)-spanning set

}
.

Now, define

Q(T, f, ε) := lim sup
n→∞

1

n
logQn(T, f, ε).

Definition 1.2.1. The topological pressure of T relative to f , denoted by Ptop(T, f), is

defined as

Ptop(T, f) := lim
ε→0

Q(T, f, ε).

Note that if 0 is the null function in C(X,R), then Qn(T, 0, ε) coincides with the

smallest cardinality of any (n, ε)-spanning set forX with respect to T , which we denote

by rn(ε,X). Hence the topological pressure of T relative to 0, Ptop(T, 0), is equal to the

topological entropy of T , which we denote by htop(T ) (see [39, Sect. 7.2]).

We also can get the topological pressure of T in another way: given a natural num-

ber n and ε > 0 we say that E ⊂ X is a (n, ε)-separated set of X with respect to T

if

∀ x, y ∈ E, x 6= y ⇒ d(T ix, T iy) ≥ ε, ∀ i ∈ {0, . . . , n− 1}.
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For f ∈ C(X,R), n ∈ N and ε > 0 put

Pn(T, f, ε) := sup

{∑
x∈E

e(Snf)(x); E is a (n, ε)-separated set

}
.

Note that if 0 ∈ C(X,R) is the null function on X and sn(ε,X) denote the largest

cardinality of any (n, ε)-separated subset of X with respect to T , then Pn(T, 0, ε) =

sn(ε,X). Now, let

P (T, f, ε) := lim sup
n→∞

1

n
logPn(T, f, ε).

The equivalence between the definitions of topological pressure via spanning and

separated sets is given in the following theorem whose proof can be found in [39, The-

orem 9.1].

Theorem 1.2.2. If f ∈ C(X,R), then Ptop(T, f) = lim
ε→0

P (T, f, ε).

1.3 Control Systems

This section is based on the references of Colonius and Kliemann [11], Sontag [36] and

Kawan [27]. Here, we present the basic notions of continuous and discrete-time control

systems for our work.

1.3.1 Continuous-time control systems

A continuous-time control system on a connected smooth manifold M is given by a

family of differential equations

ẋ(t) = F (x(t), ω(t)), ω ∈ U (1.3-1)

parametrized by control functions (or simply controls) ω : R→ Rm that lies in a set of

admissible control functions

U := {ω : R→ Rm; ω(t) ∈ Ua.e.} (1.3-2)

where U is a nonempty compact subset of Rm called control-valued space. We require

that the map F : M × Rm → TM is differentiable and, for each u ∈ U , the map
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Fu(·) := F (·, u) is a differentiable vector field on M . In the literature, it is usual to call

the map F the right-hand side of the control system.

Once we fix an initial condition x0 ∈ M and a control ω ∈ U , the assumptions on

F implies that there is a (locally) unique solution ϕ(·, x, ω) of 1.3-1 with ϕ(0, x, ω) = x0.

Since in the study of invariance entropy and invariance pressure are considered only

solutions that does not leave a compact set (or a ε-neighborhood of it), we may assume

that all the solutions are defined for all t ∈ R , allowing us to define the map

ϕ : R×M × U −→ M

(t, x, ω) 7−→ ϕ(t, x, ω)
. (1.3-3)

Along the text we denote by Σ = (R,M, U,U , ϕ) a continuous-time control system

1.3-1.

In many cases we will fix one or two of the arguments of ϕ. In order to stress which

arguments are fixed, we use the notation ϕω(t, x) = ϕt,ω(x) = ϕt(x, ω) = ϕ(t, x, ω). For

each ω ∈ U , the map ϕω : R×M →M is continuous and if t ∈ R, then ϕt,ω : M →M is

a homeomorphism (see [24, Theorem 1.2.10 and Corollary 1.2.12]). Moreover, for t > 0,

ϕ(t, x, ω) does not depend on the values of ω outside of [0, t).

Example 1.3.1. Denote by Rm1×m2 the set of all m1 ×m2 matrix with entries in R. A control

system in M = Rd is linear if the dynamics 1.3-1 is given by

ẋ(t) = Ax(t) +Bω(t), (1.3-4)

where A ∈ Rd×d and B ∈ Rd×m. For x ∈ Rd and ω ∈ U , we can see that, in this case, the

(unique) solution of 1.3-4 such that ϕ(0, x, ω) = x is

ϕ(t, x, ω) = etA +

∫ t

0

e(t−s)ABω(s)ds.

Example 1.3.2. Let X0, X1, · · · , Xm be differentiable vector fields on M . A control system

1.3-1 is called affine if the control range U is a compact and convex set and the right-hand side

F has the form

F (x, u) = X0(x) +
m∑
i=1

uiXi(x),

where u = (u1, · · · , um) ∈ U . The vector field X0 is called the drift vector field and
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X1, · · · , Xm the control vector fields of the control system, respectively.

We can define a continuous-time dynamical system θ on the set U putting θ : R ×

U → U , θ(t, ω) := θtω, where θtω(·) := ω(·+ t). The map θ is usually called shift flow.

Remark 1.3.3. In the affine control system case, if we assume that U is convex and U is a

subset of the set of all the essentially bounded functions L∞(R,Rm) (which is the dual of the set

of the integrable functions L1(R,Rm)), then U is compact and metrizable in the weak∗ topology

of L∞(R,Rm) = (L1(R,Rm))∗. A metric compatible with the topology is given by

dU(ω, ν) =
∞∑
k=1

1

2k

∣∣∫
R〈ω(t)− ν(t), xk(t)〉dt

∣∣
1 +

∣∣∫
R〈ω(t)− ν(t), xk(t)〉dt

∣∣ ,
where {xk} is an arbitrary countable dense subset of L1(R,Rm) and 〈·, ·〉 denotes an inner

product in Rm. Moreover, the shift flow θ is continuous (see [11, Lemma 4.2.1 and Lemma

4.2.4]).

Remark 1.3.4. The map ϕ satisfies the cocycle property, that is, for each s, t ∈ R, x ∈ M and

ω ∈ U

ϕ(t+ s, x, ω) = ϕ(t, ϕ(s, x, ω), θsω).

Remark 1.3.5. In the case of affine control systems, we can define the control flow Φ : R ×

M × U → M × U of Σ, which is given by the skew product of the solution ϕ(t, x, ω) and the

shift flow, i.e.,

Φ(t, (x, ω)) = (ϕ(t, x, ω), θtω).

In fact, under some assumptions, Φ defines a continuous dynamical system on M ×U (see [11,

Lemma 4.3.2]).

From now, we introduce some useful qualitative notions in order to analyze the

behavior of a control system. Given τ > 0 and x ∈ M , we start by defining the set of

points reachable from x up to time τ :

O+
≤τ (x) := {y ∈M ; ∃ t ∈ [0, τ ], ω ∈ U with y = ϕ(t, x, ω)}.

The set O+(x) :=
⋃
τ>0

O+
≤τ (x) is called the positive orbit of x. Moreover, we define the

set of points controllable to x within time τ and the negative orbit of x, respectively,
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by

O−≤τ (x) := {y ∈M ; ∃ t ∈ [0, τ ], ω ∈ U with x = ϕ(t, y, ω)}, and O−(x) :=
⋃
τ>0

O−≤τ (x).

In studying the controllability of a control system Σ, the notion of local accessibil-

ity plays a key role, mainly to explore some properties of control sets (which we will

introduce below). We say that Σ is locally accessible from x ∈M if intO±≤τ (x) are both

nonempty, for all τ > 0. If this condition holds for all x ∈ M , then we say that Σ is

locally accessible.

A set Q ⊂ M , is called controlled invariant if for all x ∈ Q there exists ω ∈ U such

that ϕ(t, x, ω) ∈ Q for all t ≥ 0.

Remark 1.3.6. For an affine control system Σ and a compact controlled invariant set Q ⊂M ,

the forward lift of Q to M × U defined as

Q := {(x, ω) ∈M × U ; ϕ(R+, x, ω) ⊂ Q},

is a compact forward-invariant set for the control flow, that is, Φt(Q) ⊂ Q for all t ≥ 0 (see

[27, Proposition 1.10] for the proof).

A controlled invariant set D ⊂M is called a control set for Σ if satisfies D ⊂ O+(x)

for all x ∈ D (approximate controllability) and D is a maximal controlled invariant set

with this property. The following result, whose proof can be found in [11, Proposition

3.2.3 and Lemma 3.2.13], collect some good properties of control sets.

Lemma 1.3.7. For a control set D ⊂M , the following holds:

i) D satisfies the no-return property, i.e.,

∀x ∈ D ∀τ > 0 ∀ω ∈ U : ϕ(τ, x, ω) ∈ D ⇒ ϕ([0, τ ], x, ω) ⊂ D.

If additionally D has nonempty interior, then it holds that

ii) If Σ is locally accessible on M , then D is connected and intD = D.

iii) If Σ is locally accessible from y ∈ intD, then y ∈ O+(x) for all x ∈ D.



1.3 Control Systems 27

iv) If Σ is locally accessible from all y ∈ intD, then intD ⊂ O+(x) for all x ∈ D, and for

every y ∈ intD one has D = O+(x) ∩ O−(x).

A sufficient condition to ensure local accessibility of a control system is that it sat-

isfies the accessibility rank condition: set F = {Fu; u ∈ U} and denote by LF the Lie

algebra generated by F , the accessibility rank condition requires that

LF(x) = TxM, ∀ x ∈M,

where LF(x) = span{F (x); F ∈ LF} ⊂ TxM . This result is known as Krener’s Theo-

rem and is stated as:

Theorem 1.3.8. If the accessibility rank condition holds for a control system 1.3-1, then it is

locally accessible.

Example 1.3.9. In the linear case described in Example 1.3.1, the accessibility rank condition

is equivalent to the rank of the Kalman’s matrix [B AB · · · Ad−1B] to be equal to d. If this

happens, we say that the matrix pair (A,B) is controllable.

From Hinrichsen and Pritchard [21, Theorems 6.2.19 and 6.2.20] (cf. also Colo-

nius and Kliemann [11, Example 3.2.16]) we get the following result on existence and

uniqueness of a control set for a linear control system.

Theorem 1.3.10. Consider the linear control system described in the Example 1.3.1. Assume

that the pair (A,B) is controllable and the control range U is a compact neighborhood of the

origin.

(i) Then there is a unique control set D with nonempty interior, it is convex and satisfies

0 ∈ intD and D = O−(x) ∩ O+(x) for every x ∈ intD.

(ii) D is closed if and only if O+(x) ⊂ D for all x ∈ D.

(iii) The control set D is bounded if and only if A is hyperbolic, that is, all the eigenvalues

of A have non zero real parts.
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1.3.2 Discrete-time control systems

This subsection presents the definition of discrete-time control systems. Here, the main

references are [27], [36] and [32].

Consider a metric space (X, %), a topological space U and a map F : X × U → X

such that for each u ∈ U the map Fu(·) := F (·, u) is continuous. Define U := UN0 as the

set of all sequences ω = (uk)k∈N0 of elements in the control range U . A discrete-time

control system is described by the difference equation

xk+1 = F (xk, uk), k ∈ N0 = {0, 1, . . .}, (1.3-5)

We endow U which is the set of control sequences with the product topology. Some-

times, we will assume that the set of control values U is a compact metric space,

implying that also U is a compact metrizable space. The shift θ on U is defined by

(θω)k = uk+1, k ∈ N0. For x0 ∈ X and ω ∈ U the corresponding solution of (1.3-5) will

be denoted by

xk = ϕ(k, x0, ω), k ∈ N0,

and ϕ(k, x0, ω) can be expressed as

ϕ(k, x, ω) =

 x, if k = 0

Fuk−1
◦ · · · ◦ Fu1 ◦ Fu0(x), if k ≥ 1.

We usually denote by Σ = (Z, X, U,U , ϕ) a discrete-time control system 1.3-5. Conve-

niently, we write ϕk,ω(·) := ϕ(k, ·, ω). By induction, one sees that this map is contin-

uous. Observe that this is a cocycle associated with the dynamical system on U × X

given by

Φ(k, ω, x0) = (θkω, ϕ(k, x0, ω)), k ∈ N0, ω ∈ U , x0 ∈ X.

We note the following property which is of independent interest (it is not used in the

rest of the thesis).

Proposition 1.3.11. The shift θ is continuous and, if F : X × U → X is continuous, then Φ

is a continuous dynamical system.
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Proof. Continuity of θ follows since the sets of the form

W = W0 ×W1 × · · · ×WN × U × · · · ⊂ UN0

with Wi ⊂ U open for all i and N ∈ N form a subbasis of the product topology and the

preimages

θ−1W = U ×W0 ×W1 × · · · ×WN × U × · · ·

are open. If F is continuous, then induction shows that ϕ(k, x0, ω) is continuous in

(x0, ω) ∈ X × U for all k.

1.4 Invariance Entropy

In this section we introduce initially the invariance entropy for continuous-time control

systems and present some results and properties which can be found in [27]. Next, the

concept of inner invariance entropy and topological feedback entropy are presented

for discrete-time control systems, and the relation of these two concepts. We start with

the definition of admissible pair which will be used along this work.

Definition 1.4.1. A pair (K,Q) of nonempty subsets ofM is called admissible for the control

system Σ = (R,M, U,U , ϕ) if it satisfies the following properties:

i) K is compact;

ii) For each x ∈ K, there exists ω ∈ U such that ϕ(t, x, ω) ∈ Q for all t ≥ 0.

Given τ > 0 and an admissible pair (K,Q), we say that a set S ⊂ U is a (τ,K,Q)-

spanning set if

∀ x ∈ K, ∃ ω ∈ S; ϕ([0, τ ], x, ω) ⊂ Q.

Denote by rinv(τ,K,Q) the minimal number of elements such a set can have (if there is

no finite set we say that rinv(τ,K,Q) = ∞). If K = Q we omit the argument K, that is,

we write rinv(τ,Q) and speak (τ,Q)-spanning set.

The existence of (τ,K,Q)-spanning sets is guaranteed by property (ii); indeed, U is

a (τ,K,Q)-spanning set for every τ > 0. A pair of the form (Q,Q) is admissible if and

only if Q is a compact and controlled invariant set.
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Definition 1.4.2. Given an admissible pair (K,Q), we define the invariance entropy of

(K,Q) by

hinv(K,Q) = hinv(K,Q; Σ) := lim sup
τ→∞

1

τ
log rinv(τ,K,Q).

Here, we use the convention that log = loge = ln. If K = Q, again we omit the argument K

and write hinv(Q). Moreover, we let log∞ :=∞.

Hence, invariance entropy is a nonnegative (possibly infinite) quantity which is as-

signed to an admissible pair (K,Q). In fact, the invariance entropy of (K,Q) measures

the exponential growth rate of the minimal number of different control functions suf-

ficient to stay in Q when starting in K, as time tends to infinity.

The following proposition presents some basics properties of rinv(τ,K,Q) and hinv(K,Q)

with respect to their arguments, including the finiteness of them.

Proposition 1.4.3. Let (K,Q) be an admissible pair. Then the following assertions hold:

i) If τ1 < τ2, then rinv(τ1, K,Q) ≤ rinv(τ2, K,Q).

ii) IfQ ⊂ P , then (K,P ) is admissible and rinv(τ,K,Q) ≥ rinv(τ,K, P ) which implies that

hinv(K,Q) ≥ hinv(K,P ).

iii) If L ⊂ K is closed, then (L,Q) is admissible and rinv(τ, L,Q) ≤ rinv(τ,K,Q) which

implies that hinv(L,Q) ≤ hinv(K,Q).

iv) If Σ′ = (R,M, U,U ′, ϕ′) is another control system onM such that U ′ ⊃ U andϕ′(t, x, ω) =

ϕ(t, x, ω) for all ω ∈ U , then (K,Q) is also admissible for Σ′ and hinv(K,Q; Σ′) ≤

hinv(K,Q; Σ).

v) If Q is open, then rinv(τ,K,Q) is finite for all τ > 0.

vi) If Q is a compact controlled invariant set, then:

vi1) The number rinv(τ,Q) is either finite for all τ > 0 or for none.

vi2) The function log rinv(·, Q) : (0,+∞) → R+ ∪ {∞}, τ 7→ log rinv(τ,Q), is subadi-

tive and therefore

hinv(Q) = lim
τ→∞

1

τ
log rinv(τ,Q) = inf

τ>0

1

τ
log rinv(τ,Q).
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Another notion of entropy (whose definition requires a metric) associated with an

admissible pair is given in sequence.

Definition 1.4.4. Given an admissible pair (K,Q) such that Q is closed in M , and a metric %

on M , we define the outer invariance entropy of (K,Q) by

hinv,out(K,Q) := hinv,out(K,Q; %; Σ) := lim
ε↘0

hinv(K,Nε(Q)) = sup
ε>0

hinv(K,Nε(Q)),

where Nε(Q) = {y ∈M ;∃ x ∈ Q with d(x, y) < ε} denotes the ε-neighborhood of Q.

These two quantities relate as follows

0 ≤ hinv,out(K,Q) ≤ hinv(K,Q) ≤ ∞.

Although in general these quantities do not coincide, this fact is verified (under some

assumption which we expose in sequence) in the case of linear control systems (see [27,

Corollary 5.3]):

Theorem 1.4.5. Consider a linear control system Σlin given by the differential equation

ẋ(t) = Ax(t) +Bω(t), ω ∈ U ,

where the matrix pair (A,B) is controllable and such that A has no eigenvalues on the imag-

inary axis (that is, A is hyperbolic). Further assume that the control range U is a compact

and convex set with 0 ∈ intU . Let D ⊂ Rd be the unique control set for Σlin with nonempty

interior. Then for every compact set K ⊂ D it holds that

hinv(K,Q) ≤
∑

λ∈σ(A)

max{0, nλRe(λ)},

where σ(A) denotes the spectrum of A and nλ is the multiplicity of λ ∈ σ(A). If, additionally,

K has positive Lebesgue measure and Q := D it holds that

hinv(K,Q) = hinv,out(K,Q) =
∑

λ∈σ(A)

max{0, nλRe(λ)}.

Remark 1.4.6. Note that the definitions of hinv(K,Q) and hinv,out(K,Q) can be adapted for

discrete-time control systems as presented in [27].
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From now, consider a discrete-time control system Σ = (Z, X, U,U , ϕ). We say that

a compact subsetQ ⊂ X with nonempty interior is strongly invariant for Σ if for every

x ∈ Q, there is u ∈ U such that F (x, u) ∈ intQ, or equivalently, ϕ(1, x, u) ∈ intQ.

Definition 1.4.7. A triple C = (A, τ, G) is called an invariant open cover of Q if it satisfies

the following properties:

• A is an open cover of Q;

• τ is a positive integer;

• G is a finite sequence of maps Gk : A → U , k = 0, 1, · · · , τ −1 such that for each A ∈ A

it holds that

ϕ(k,A,G(A)) ⊂ intQ, for k = 1, · · · , τ,

that is, if the initial value x ∈ Q lies in the set A ∈ A, then any control ω = (uk)k∈N0

which satisfies uk = Gk(A) for k = 0, 1, · · · , τ − 1 yields ϕ(k, x, ω) ∈ intQ, for k =

1, · · · , τ .

It is possible to verify that all strongly invariant sets Q for Σ = (Z, X, U,U , ϕ) admit

an invariant open cover (see [27, pg. 69-70]).

Given an arbitrary invariant open cover C = (A, τ, G), for any sequence α = {Ai}i∈N0

of sets in A, we define the control sequence

ω(α) := (u0, u1, · · · ) with (ul)
iτ−1
l=(i−1)τ = G(Ai−1), for all i ≥ 1, (1.4-6)

that is,

ω(α) = (u0, · · · , uτ−1︸ ︷︷ ︸
G(A0)

, uτ , · · · , u2τ−1︸ ︷︷ ︸
G(A1)

, · · · ).

We further define for each j ∈ N the set

Bj(α) := {x ∈ X; ϕ(iτ, x, ω(α)) ∈ Ai, for i = 0, 1, · · · , j − 1}. (1.4-7)

Then Bj(α) is an open set, since it can be written as the finite intersection of preim-

ages of open sets under continuous maps, namely

Bj(α) =

j−1⋂
i=0

{x ∈ X; ϕ(iτ, x, ω(α)) ∈ Ai} =

j−1⋂
i=0

ϕ−1
iτ,ω(α)(Ai).
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Furthermore, for each j ∈ N, letting α run through all sequences of elements in A, the

family

Bj = Bj(C) := {Bj(α); α ∈ AN0}

is an open cover of Q.

Let N(Bj;Q) denote the minimal number of elements in a finite subcover of Bj .

Then, the topological feedback entropy hfb(Q) is defined by

hfb(C) = hfb(C; Σ) := lim
j→∞

1

jτ
logN(Bj;Q), (1.4-8)

hfb(Q) = hfb(Q; Σ) := inf
C
hfb(C; Σ),

where the infimum is taken over all invariant open covers C = (A, τ, G) of Q.

Next we present the computation of a non smooth discrete-time control system

contained in [32].

Example 1.4.8. Consider the control system Σ = (Z, X, U,U , ϕ) where the right-hand side

F : R× U → R is defined by F (x, u) = max
{

2x−1
2
, 1−x

2

}
+ u and U ⊂ R is such that U 3 0.

Then the set Q = [0, 1] is strongly invariant, because F (Q, 0) ⊂ intQ. Let C = (A, τ, G),

where A = {A := (−1
3
, 4

3
)}, τ ∈ N and G ≡ 0. Since F (Q, 0) ⊂ intQ, then C is an invariant

open cover. In this case, we have AN0 admits only one element α : N0 → A, αn = A for all

n ∈ N0.

Note that

Bj(α) = B1(α) = A ⊃ Q, for all j ∈ N,

because F (A, 0) ⊂ Q. Then Bj = {A} and hence N(Bj;Q) = 1. Therefore

hfb(C) := lim
j→∞

1

jτ
logN(Bj;Q) = lim

j→∞

1

jτ
log 1 = 0

and we obtain

0 ≤ hfb(Q) ≤ hfb(C) = 0,

that is hfb(Q) = 0.

In order to show that the limit (1.4-8) exists, the following general lemma is neces-

sary:
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Lemma 1.4.9. Let T ∈ {Z,R} and f : T+ → R be a subadditive function, that is, f(t+ s) ≤

f(t) + f(s), for all s, t ∈ T+. Suppose further that f is bounded from above on an interval of

the form T ∩ [0, t0] with t0 > 0. Then limt→∞ f(t)/t converges (the limit may be −∞), and

lim
t→∞

f(t)

t
= inf

t>0

f(t)

t
=: γ.

Proof. See Lemma B.3 of [27] for the proof.

In the following, we introduce a modified version of invariance entropy for discrete-

time control systems, which turns out to coincide with the topological feedback en-

tropy.

Definition 1.4.10. Consider Σ = (Z, X, U,U , ϕ) and a compact strongly invariant setQ ⊂ X

for Σ with intQ 6= ∅. For τ ∈ N, a subset S ⊂ U is called (τ,Q, intQ)−spanning if

∀x ∈ Q, ∃ω ∈ S such that ϕ([1, τ ], x, ω) ⊂ intQ.

The minimal cardinality of such a set is denoted by rinv,int(τ,Q) and the inner invariance

entropy of Q is defined by

hinv,int(Q) = hinv,int(Q; Σ) := lim
τ→∞

1

τ
log rinv,int(τ,Q).

Since the sequence τ 7→ log rinv,int(τ,Q) is subadditive, the definition of hinv,int(Q) is

correct and

hinv,int(Q) = lim
τ→∞

1

τ
log rinv,int(τ,Q) = inf

τ≥1

1

τ
log rinv,int(τ,Q).

The following result, whose proof can be found in [10], relates the quantities hfb(Q)

and hinv,int(Q).

Theorem 1.4.11. Given a strongly invariant compact set Q ⊂ X for Σ = (Z, X, U,U , ϕ), we

have

hfb(Q) = hinv,int(Q).



CHAPTER 2

INVARIANCE PRESSURE FOR CONTINUOUS-TIME

CONTROL SYSTEMS

The main notion of this thesis - invariance pressure - is presented in this chapter for

continuous-time control systems Σ = (R,M, U,U , ϕ). The original notion was intro-

duced by Colonius, Cossich and Santana in [6] and generalized by the same authors

in [7] for admissible pairs. Roughly speaking, the invariance pressure of a Σ measures

the weighted information necessary that open loop controls provide to the Σ in order

to keep it in a given subset Q of the state space, starting from a compact set K ⊂ Q.

The term "weighted information" can express the physical quantities (see Examples

2.1.6 and 3.3.8) depending on the considered weight f (which is a continuous function

defined on the control-valued-space U ) and the control functions.

Given an admissible pair (K,Q), if we denote by aτ (f,K,Q) the weighted informa-

tion (with weight f ) necessary, produced by control functions, for that every trajectory

of Σ starting in K remain in the bigger set Q up to time τ , then the invariance pressure

Pinv(f,K,Q) is the exponential growth rate of aτ (f,K,Q) as τ tends to infinity,

Pinv(f,K,Q) := lim sup
τ→∞

1

τ
log aτ (f,K,Q).

This definition is similar to that of topological pressure which measures the "weighted"

exponential orbit complexity of a dynamical system. It was introduced by the physical-
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mathematician David Ruelle in 1967 (see [34]) and generalized by Peter Walters in 1976

for (discrete-time) dynamical systems on a compact metric space (see [38]). Despite

the suggestive name, the definition of invariance pressure is not necessarily related to

pressure, in the physical sense. This name was given in order to make a parallel with

the dynamical concept of topological pressure.

In this chapter we follow the ideas presented in [6], [7], [9], Kawan [24], [27] and

[39]. It is organized in the following way: Section 2.1 is presented the definition of

invariance pressure and outer invariance pressure for continuous-time control systems

as well as the basic properties of these amounts such as the finiteness of Pinv(f,K,Q),

the Lipschitz property of Pinv(·, K,Q) and how it behaves in relation to its arguments.

Finally, in Section 2.2 we explore some elementary properties of invariance pressure

which are similar to the well-known properties of the classical topological pressure

notions in dynamical systems, for example, the time discretization, the power rule, the

product rule and the invariance under conjugacy.

2.1 Definitions and Basic Properties

Considering a continuous-time control system Σ on a connected smooth manifold M ,

in this section we define the invariance pressure and the outer invariance pressure of

Σ and we explore some basic properties that this quantities satisfy.

Initially, consider an admissible pair (K,Q) and denote by C(U,R) the set of all

continuous functions f : U → R. Moreover, given τ > 0, ω ∈ U and a f ∈ C(U,R) we

denote by (Sτf)(ω) the real number
∫ τ

0
f(ω(s))ds. Then we can define

aτ (f,K,Q) := inf

{∑
ω∈S

e(Sτf)(ω); S is a (τ,K,Q)-spanning set

}
. (2.1-1)

Note that in the definition of aτ (f,K,Q) it suffices to take the infimum over those

(τ,K,Q)-spanning sets which do not have proper subsets that are also (τ,K,Q)-spanning

sets. In fact, if S is a (τ,K,Q)-spanning set which contains another (τ,K,Q)-spanning

S ′, the summands in S \ S ′ can be omitted, since e(Sτf)(ω) > 0.
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Moreover, we can observe that since U is compact, then

aτ (f,K,Q) = inf
S

∑
ω∈S

e(Sτf)(ω) ≥ eτ inf f inf
S

(#S) = eτ inf frinv(K,Q) > 0.

Definition 2.1.1. The invariance pressure of Pinv(f,K,Q) of the admissible pair (K,Q)

with respect to f is given by

Pinv(f,K,Q) = Pinv(f,K,Q; Σ) := lim sup
τ→∞

1

τ
log aτ (f,K,Q).

Hence, the invariance pressure is defined as the exponential growth rate of the min-

imal weighted information (with weight f ) that control functions produce in order to

keep every trajectory starting inK in the bigger setQ up to time τ , as τ tends to infinity.

If K = Q we omit the argument K and write aτ (f,Q) and Pinv(f,Q). Note that, in

this case, we assume that Q is compact and controlled invariant.

Definition 2.1.2. Given an admissible pair (K,Q) such that Q is closed in M , and a metric %

on M , we define the outer invariance pressure of (K,Q) with respect to f by

Pinv,out(f,K,Q) = Pinv,out(f,K,Q; %; Σ) := lim
ε↘0

Pinv(f,K,Nε(Q)),

Note that the limit for ε↘ 0 exists and equals the supremum over ε > 0, since from

Proposition 2.1.7 it follows that the pairs (K,Nε(Q)) are admissible and that ε1 < ε2

implies Pinv(f,K,Nε1(Q)) ≥ Pinv(f,K,Nε2(Q)). Furthermore

−∞ < Pinv,out(f,K,Q) ≤ Pinv(f,K,Q) ≤ ∞

for every admissible pair (K,Q) and f ∈ C(U,R).

These definitions deserve several comments. First observe that Pinv(f,K,Q) ≥ 0 for

f ≥ 0.
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If f = 0 is the null function in C(U,R), then
∑

ω∈S e
(Sτ0)(ω) =

∑
ω∈S 1 = #S, hence

aτ (0, K,Q) = inf

{∑
ω∈S

e(Sτ0)(ω); S is a (τ,K,Q)-spanning set

}
= inf {#S; S is a (τ,K,Q)-spanning set}

= rinv(τ,K,Q). (2.1-2)

Taking the logarithm, dividing by τ and letting τ tend to∞ one finds that Pinv(0, K,Q) =

hinv(K,Q). Hence the (outer) invariance pressure generalizes the (outer) invariance en-

tropy.

Another comment concerns the independence of the invariance pressure with re-

spect to uniformly equivalent metrics. We say that two metrics %1 and %2 on M are

uniformly equivalent on Q, if for all ε > 0 there exists δ > 0 such that for all x ∈ Q

and for all y ∈M with %i(x, y) < δ implies that %j(x, y) < ε, for i, j = 1, 2, i 6= j.

The following proposition states that the value of the outer invariance pressure of

(K,Q) does not change when we consider uniformly equivalent metrics. Since the

proof is similar to Kawan [27, Proposition 2.5], we will omit it.

Proposition 2.1.3. Let (K,Q) be an admissible pair such that Q is closed in M . If %1 and

%2 are two metrics on M which are uniformly equivalent on Q, then Pinv,out(f,K,Q; %1) =

Pinv,out(f,K,Q; %2) for all f ∈ C(U,R). If Q is compact, then this is automatically satisfied,

and in this case the outer invariance pressure is independent of the metric.

The next proposition shows that we just need finite spanning sets to get aτ (f,K,Q).

Proposition 2.1.4. Consider an admissible pair (K,Q) with Q open in M and f ∈ C(U,R).

Then

aτ (f,K,Q) = inf

{∑
ω∈S

e(Sτf)(ω); S is a finite (τ,K,Q)-spanning set

}
.

Proof. First we show that if S is a (τ,K,Q)-spanning set, τ > 0, then there exists a finite

(τ,K,Q)-spanning set S ′ ⊂ S. In fact, take an arbitrary x ∈ K. Since S is (τ,K,Q)-

spanning, there is ωx ∈ S with ϕ(t, x, ωx) ∈ Q for t ∈ [0, τ ]. Openness of Q and uniform

continuity of ϕ(t, ·, ω) in t ∈ [0, τ ], we find an open neighborhood Wx of x such that

ϕ([0, τ ],Wx, ωx) ⊂ Q. Compactness of K implies the existence of x1, . . . , xk ∈ K such
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that K ⊂
k⋃
i=1

Wxi . It is easy to see that the set S ′ = {ωx1 , . . . , ωxk} ⊂ S is a (τ,K,Q)-

spanning set.

Now define

ãτ (f,K,Q) := inf

{∑
ω∈S

e(Snf)(ω); S is a finite (τ,K,Q)-spanning set

}
.

Since clearly aτ (f,K,Q) ≤ ãτ (f,K,Q), we just have to prove the reverse inequality.

Given a (τ,K,Q)-spanning set S, as shown earlier there is a finite (τ,K,Q)-spanning

subset S ′ ⊂ S . Hence
∑

ω∈S′ e
(Sτf)(ω) ≤

∑
ω∈S e

(Sτf)(ω), which implies that ãτ (f,K,Q) ≤

aτ (f,K,Q).

Remark 2.1.5. Since for the outer invariance entropy one considers (τ,K,Nε(Q))-spanning

sets, ε > 0, by Proposition 2.1.4 it is sufficient to consider finite (τ,K,Nε(Q))-spanning sets,

because of the openness of Nε(Q).

Example 2.1.6. Assume that f ∈ C(U,R) and that O+(x) ⊂ Q, for all x ∈ K, that is, the

solutions always remains in Q when starting in K. We show that Pinv(f,K,Q) = inf f . Since

for every (τ,K,Q)-spanning set S the estimate

∑
ω∈S

e(Sτf)(ω) ≥ eτ inf f ·#S ≥eτ inf f

holds, it follows that Pinv(f,K,Q) ≥ inf f . Conversely, given ε > 0 there exists u ∈ U with

f(u) ≤ inf f + ε.

Then the one-point set S = {ω}, where ω(t) ≡ u, is (τ,K,Q)-spanning and

∑
ω∈S

e(Sτf)(ω) = e(Sτf)(ω) = eτf(u) ≤ eτ inf f+τε.

Taking the infimum over all (τ,K,Q)-spanning sets one finds that the invariance pressure

satisfies

Pinv(f,K,Q) = lim sup
τ→∞

1

τ
log aτ (f,K,Q) ≤ lim sup

τ→∞

1

τ
log eτ inf f + ε = inf f + ε.

Since ε > 0 is arbitrary, it follows that Pinv(f,K,Q) ≤ inf f .
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A simple illustration of this case is represented in the above figure where we consider a

RC-circuit driven by a voltage source ω(t) ∈ U := [a, b], 0 ≤ a < b.

−
+ω

i

C

R

Since the current i is in the direction indicated, then there will be a drop in the voltage

across each of the elements. By Kirchhoff’s law, the total voltage drop across these elements

must be balanced by that supplied by the voltage source. So if the voltage across the resistor and

capacitor at time t are ωR(t), ωC(t), respectively, we have

ω(t)− ωR(t)− ωC(t) = 0.

But if the charge on the capacitor is q(t), the resistance of the resistor is R > 0 and the

capacitance of the capacitor is C > 0, then

ωR(t) = Ri(t), ωC(t) = q(t)/C, i(t) = q̇(t), t ≥ 0.

Hence we obtain the following first order differential equation

Rq̇(t) +
1

C
q(t) = ω(t).

Then the set Q := [aC, bC] satisfies O+(x) ⊂ Q, for all x ∈ Q. In particular, if the current

i > 0 is constant in time and f(u) = iu, then (Sτf)(ω) represents the electrical energy spent

between the instants 0 and τ . If fact, if P (t) andE(t) denote the electric power and the electrical

energy transferred at time t, respectively, then

(Sτf)(ω) =

∫ τ

0

iω(t)dt =

∫ τ

0

P (t)dt = E(τ)− E(0).

In this case, the information measured by the invariance pressure is the variation of electrical

energy, that is, Pinv(f,Q) measures the exponential growth rate of the minimal amount of total

variation of electrical energy produced by the voltage source to keep the charge in Q as time
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tends to infinity. In this case, Pinv(f,Q) = inf f = ia.

The next results of this section show several basic properties of the invariance pres-

sure with respect to an admissible pair.

Proposition 2.1.7. For a control system Σ = (R,M, U,U , ϕ) and an admissible pair (K,Q),

the following assertions hold:

i) If 0 < τ1 < τ2 and f ≥ 0, then aτ1(f,K,Q) ≤ aτ2(f,K,Q);

ii) IfQ ⊂ R, then (K,R) is admissible and aτ (f,K,Q) ≥ aτ (f,K,R); hence Pinv(f,K,Q) ≥

Pinv(f,K,R);

iii) If L ⊂ K is closed in M , then (L,Q) is admissible and aτ (f, L,Q) ≤ aτ (f,K,Q); hence

Pinv(f, L,Q) ≤ Pinv(f,K,Q);

iv) If Σ′ = (R,M, U,U ′, ϕ′) is another control system such that set of admissible control

functions U ′ contain U and ϕ′(t, x, ω) = ϕ(t, x, ω) whenever ω ∈ U , then (K,Q) is

also admissible for Σ′ and Pinv(f,K,Q; Σ′) ≤ Pinv(f,K,Q; Σ). In particular, if Σ′ =

(R,M, V,V , ϕ′) is such that V ⊂ U , V := {ω ∈ U ; ω(t) ∈ V a.e.}, ϕ′(t, x, ω) =

ϕ(t, x, ω) whenever ω ∈ V and (K,Q) is admissible for Σ′, then Pinv(f,K,Q; Σ) ≤

Pinv(f,K,Q; Σ′).

The previous properties contained in Proposition 2.1.7 are easy to see and hence we

will not present their proofs.

In order to expose some properties of the function Pinv(·, K,Q), we will need the

following elementar lemma.

Lemma 2.1.8. Let ai ≥ 0, bi > 0, i = 1, .., n ∈ N, be real numbers. Then

∑n
i=1 ai∑n
i=1 bi

≥ min
i=1,...,n

(
ai
bi

)
.

Proof. Let n = 2. Then we may assume that a1
b1
≤ a2

b2
. Dividing numerator and denom-

inator by b1 one can further assume that b1 = 1, hence the assumption takes the form

a1 ≤ a2
b2

and the assertion reduces to a1+a2
1+b2

≥ a1. This is equivalent to

a1 + a2 ≥ a1 + a1b2, i.e., a2 ≥ a1b2,
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which is our assumption. The induction step from n to n+ 1 follows since

∑n+1
i=1 ai∑n+1
i=1 bi

=

∑n
i=1 ai + an+1∑n
i=1 bi + bn+1

≥ min

(∑n
i=1 ai∑n
i=1 bi

,
an+1

bn+1

)
≥ min

i=1,...,n+1

(
ai
bi

)
.

Corollary 2.1.9. Consider real numbers ai ≥ 0, bi > 0, i ∈ N. Then∑
i∈N ai∑
i∈N bi

≥ inf
i∈N

(
ai
bi

)
.

Proof. By Lemma 2.1.8, for each n ∈ N we have

∑n
i=1 ai∑n
i=1 bi

≥ min
i=1,...,n

(
ai
bi

)
≥ inf

i∈N

(
ai
bi

)
.

The result follows if we take the limit for n→∞.

The following proposition present a sufficient condition for take the infimum aτ (f,K,Q)

over countable (τ,K,Q)-spanning sets.

Proposition 2.1.10. If (K,Q) is an admissible pair and f ∈ C(U,R) such that Pinv(f,K,Q) <

∞, then for all τ > 0,

aτ (f,K,Q) := inf

{∑
ω∈S

e(Sτf)(ω); S is a countable (τ,K,Q)-spanning set

}
.

Proof. Firstly note that if Pinv(f,K,Q) < ∞, f ∈ C(U,R), then for all τ > 0 there is a

countable (τ,K,Q)-spanning set S. In fact, if there exists τ > 0 such that all (τ,K,Q)-

spanning is uncountable, then all (σ,K,Q)-spanning set with σ ≥ τ is also uncount-

able, because all (σ,K,Q)-spanning set is a (τ,K,Q)-spanning. Hence we should have

aτ (f,K,Q) =∞which implies that Pinv(f,K,Q) =∞.

Secondly observe also that if the invariance pressure with respect to f ∈ C(U,R) is

finite, then there are for every τ > 0 countable (τ,K,Q)-spanning sets S with

∑
ω∈S

e(Sτf)(ω) <∞,

because any sum over uncountably many positive numbers must be equal to +∞.
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Now put

âτ (f,K,Q) := inf

{∑
ω∈S

e(Sτf)(ω); S is a countable (τ,K,Q)-spanning set

}
.

It is clear that aτ (f,K,Q) ≤ âτ (f,K,Q). To show the reverse inequality, suppose that

âτ (f,K,Q) > aτ (f,K,Q). Then given ε := âτ (f,K,Q) − aτ (f,K,Q) there exists a

(τ,K,Q)-spanning set such that

aτ (f,K,Q) ≤
∑
ω∈S

e(Sτf)(ω) < aτ (f,K,Q) + ε = âτ (f,K,Q). (2.1-3)

Note that by (2.1-3) S can not be countable. Hence
∑

ω∈S e
(Sτf)(ω) = +∞ witch implies

that âτ (f,K,Q) = +∞. Since Pinv(f,K,Q) < ∞, there exists a countable (τ,K,Q)-

spanning set Ŝ with
∑

ω∈Ŝ e
(Sτf)(ω) <∞ and this contradicts âτ (f,K,Q) ≤

∑
ω∈Ŝ e

(Sτf)(ω).

Hence we have âτ (f,K,Q) = aτ (f,K,Q).

Proposition 2.1.11. The following assertions hold for an admissible pair (K,Q), functions

f, g ∈ C(U,R) and c ∈ R:

i) If f ≤ g, then Pinv(f,K,Q) ≤ Pinv(g,K,Q). In particular hinv(K,Q) + inf f ≤

Pinv(f,K,Q) ≤ hinv(K,Q) + sup f ;

ii) Pinv(f + c,K,Q) = Pinv(f,K,Q) + c;

Proof. i) If f ≤ g, it follows that
∑

ω∈S e
(Sτf)(ω) ≤

∑
ω∈S e

(Sτg)(ω) for all (τ,K,Q)-

spanning sets S, because the exponential function is increasing. Hence aτ (f,K,Q) ≤

aτ (g,K,Q) and so Pinv(f,K,Q) ≤ Pinv(g,K,Q).

ii) One finds that

aτ (f + c,K,Q) = inf

{∑
ω∈S

e(Sτ (f+c))(ω); S is a (τ,K,Q)-spanning

}

= inf

{
eτc
∑
ω∈S

e(Sτf)(ω); S is a (τ,K,Q)-spanning

}
= eτcaτ (f,K,Q),
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hence

Pinv(f + c,K,Q) = lim
τ→∞

1

τ
log aτ (f + c,K,Q) = lim

τ→∞

1

τ
log (eτcaτ (f,K,Q))

= c+ Pinv(f,K,Q).

Remark 2.1.12. By item (i) of Proposition 2.1.11 we get that for each f ∈ C(U,R), Pinv(f,K,Q) =

∞ if, and only if, hinv(K,Q) = ∞. Hence we can change the assumption Pinv(f,K,Q) < ∞

in Proposition 2.1.10 for hinv(K,Q) <∞.

The next result presents a regularity property of the map Pinv(·, K,Q) : C(U,R) →

R.

Proposition 2.1.13. If (K,Q) is an admissible pair with hinv(K,Q) <∞, then

|Pinv(f,K,Q)− Pinv(g,K,Q)| ≤ ‖f − g‖∞,

where ‖ · ‖∞ is the uniform norm on C(U,R).

Proof. Note that using Corollary 2.1.9 for the second inequality below, one finds

aτ (g,K,Q)

aτ (f,K,Q)
=

infS
{∑

ω∈S e
(Sτg)(ω)

}
infS

{∑
ω∈S e

(Sτf)(ω)
} ≥ inf

S

{∑
ω∈S e

(Sτg)(ω)∑
ω∈S e

(Sτf)(ω)

}

≥ inf
S

{
inf
ω∈S

e(Sτg)(ω)

e(Sτf)(ω)

}
≥ e−τ‖f−g‖∞ ,

where the infimum above are taken over all countable (τ,K,Q)-spanning sets. There-

fore aτ (f,K,Q)
aτ (g,K,Q)

≤ eτ‖f−g‖∞ and so

Pinv(f,K,Q)− Pinv(g,K,Q) = lim
τ→∞

1

τ
log

aτ (f,K,Q)

aτ (g,K,Q)
≤ lim

τ→∞

1

τ
log eτ‖f−g‖∞

= ‖f − g‖∞.

Interchanging the roles of f and g one finds assertion.

Open Question 1. In [40], Walters present several necessary and sufficient conditions for the

topological pressure of a continuous transformation on a compact metric space to be differen-



2.1 Definitions and Basic Properties 45

tiable, in the Fréchet sense, with respect to the potentials f defined on the state space. Is the

map Pinv(·, K,Q) : C(U,R)→ R ∪ {+∞} differentiable in some sense?

Open Question 2. In [39, Theorem 9.7 (v)] we can see that the topological pressure is convex

as function of the potentials. Is this property verified in the case of invariance pressure?

The next corollaries deal with the finiteness of invariance pressure.

Corollary 2.1.14. Consider f ∈ C(U,R). Then

i) If Q is open, then aτ (f,K,Q) is finite for all τ > 0;

ii) If Q is a compact controlled invariant set, then aτ (f,Q) is either finite for all τ > 0 or

for none.

Proof. The two statements follows from the inequalities

eτ inf frinv(τ,K,Q) ≤ aτ (f,K,Q) ≤ eτ sup frinv(τ,K,Q)

and itens (v) and (vi) of Proposition 1.4.3 .

Remark 2.1.15. Note that Propositions 2.1.11, 2.1.13 and Corollary 2.1.14(i) also hold for the

outer invariance pressure.

As an immediate consequence, we have:

Corollary 2.1.16. If f ∈ C(U,R) and Q is compact controlled invariant, then the following

assertions are equivalent:

i) Pinv(f,Q) is finite;

ii) aτ (f,Q) is finite for some τ ;

iii) aτ (f,Q) is finite for all τ .

Example 2.1.17. Consider the following control system in R2\{(0, 0)}

 ẋ1(t)

ẋ2(t)

 =

(
x(t)√

x(t)2 + y(t)2
− ω(t)

)2
 x1(t)

x2(t)

 ,
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where ω(t) ∈ [−1, 1], Q := {(x, y) ∈ R2; 1
2
≤
√
x2 + y2 ≤ 1} and K := {(x, y) ∈ R2; x2 +

y2 = 1}, then (K,Q) is an admissible pair. In fact, given any z = (x, y) ∈ K, you can

consider the control ωz(t) :≡ x and note that z can be kept in Q for any positive time τ > 0

by using the constant control function ωz. Hence hinv(K,Q) = ∞ and by Remark 2.1.12,

Pinv(f,K,Q) = ∞, for each f ∈ C(U,R). This example shows the necessity of openess of Q

in Proposition 2.1.4: since one needs infinitely many of these control functions for all points on

K, given a (τ,K,Q)-spanning S, none finite (τ,K,Q)-spanning set S ′ ⊂ S can exists.

We can not replace the limit superior in Definition 2.1.1 by a limit, because this limit

does not exist in the general case. However, if Q is compact controlled invariant and

K = Q we can do that.

Proposition 2.1.18. If Q is a compact controlled invariant set and f ∈ C(U,R), then the

function τ 7→ aτ (f,Q) is subadditive and therefore

Pinv(f,Q) = lim
τ→∞

1

τ
log aτ (f,Q) = inf

τ>0

1

τ
log aτ (f,Q).

Proof. If aτ (f,Q) =∞ for all τ , the assertion is trivial. Hence, by Corollary 2.1.14 (ii) we

can assume that aτ (f,Q) <∞ for all τ . If we show that aτ1+τ2(f,Q) ≤ aτ1(f,Q)aτ2(f,Q)

for all τ1, τ2 > 0, then the result follows from Lemma 1.4.9 . To this end, consider for

j = 1, 2 (τj, Q)-spanning sets Sj . For ω1 ∈ S1, ω2 ∈ S2 define a control function ω ∈ U

by

ω(t) =

 ω1(t), if t ∈ [0, τ1]

ω2(t− τ1), if t > τ1

.

These functions form a (τ1+τ2, Q)-spanning set. Hence aτ1+τ2(f,Q) ≤ aτ1(f,Q)aτ2(f,Q),

which concludes the proof.

2.2 Elementary Properties

This section brings together many interesting properties of invariance pressure which

allows us to compare with the well-known properties satisfied by the topological pres-

sure of dynamical systems (cf. [39, Section 9.2]). Moreover, all the elementary proper-

ties which invariance entropy satisfies (cf. [27, Section 2.2]) can be generalized when

we assign a weigh f on the control values.
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We start this section with the following theorem which shows that for the invari-

ance pressure the time may be discretized, which generalizes the Proposition 3.4 (ii) of

[9].

Theorem 2.2.1. If (K,Q) is an admissible pair for Σ = (R,M, U,U , ϕ) and f ∈ C(U,R),

then for each τ > 0

Pinv(f,K,Q) = lim sup
n→∞

1

nτ
log anτ (f,K,Q). (2.2-4)

Proof. Given f ∈ C(U,R), the inequality

Pinv(f,K,Q) ≥ lim sup
n→∞

1

nτ
log anτ (f,K,Q)

is obvious. For the converse, we can see that the function g(u) := f(u) − inf f is non-

negative (if f ≥ 0, it is not necessary to consider the function g). Let (τk)k≥1, τk ∈ (0,∞)

and τk → ∞. Then for every k ≥ 1 there exists nk ≥ 1 such that nkτ ≤ τk ≤ (nk + 1)τ

and nk →∞ for k →∞. Since g ≥ 0 it follows that

aτk(g,K,Q) ≤ a(nk+1)τ (g,K,Q)

and consequently

1

τk
log aτk(g,K,Q) ≤ 1

nkτ
log a(nk+1)τ (g,K,Q).

This yields

lim sup
k→∞

1

τk
log aτk(g,K,Q) ≤ lim sup

k→∞

1

nkτ
log a(nk+1)τ (g,K,Q).

Since
1

nkτ
log a(nk+1)τ (g,K,Q) =

nk + 1

nk

1

(nk + 1)τ
log a(nk+1)τ (g,K,Q)

and nk+1
nk
→ 1 for k →∞, we obtain

lim sup
k→∞

1

τk
log aτk(g,K,Q) ≤ lim sup

k→∞

1

nkτ
log ankτ (g,K,Q) ≤ lim sup

n→∞

1

nτ
log anτ (g,K,Q).
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This shows that

Pinv(f − inf f,K,Q) = lim sup
n→∞

1

nτ
log anτ (f − inf f,K,Q),

and as in Proposition 2.1.11 (ii) we have

Pinv(f,K,Q) = Pinv(f − inf f,Q) + inf f = Pinv(g,K,Q) + inf f

= lim sup
n→∞

1

nτ
log anτ (f − inf f,K,Q) + inf f

= lim sup
n→∞

1

nτ
log e−n inf fanτ (f,K,Q) + inf f

= lim sup
n→∞

1

nτ
log anτ (f,K,Q).

In the case of dynamical systems, the topological pressure tends to be smaller when

we restrict the system to invariant subsets than when the whole space is considered

[39, cf. Theorem 9.8 (iii)]. Now, given an admissible pair (K,Q) we investigate how

the invariance pressure behaves when we consider a finite subcover of K by compact

sets. We will need the following lemma which is proved in [27, Lemma 2.1].

Lemma 2.2.2. For any functions f1, · · · , fN : T ∩ (0,∞)→ R, T ∈ {Z,R}, it holds that

lim sup
τ→∞

1

τ
log

N∑
i=1

fi(τ) ≤ max
1≤i≤N

lim sup
τ→∞

1

τ
log fi(τ).

Proposition 2.2.3. Let Σ = (R,M, U,U , ϕ) be a control system, f ∈ C(U,R) and (K,Q)

an admissible pair. Assume that K =
⋃N
i=1Ki with finitely many compact sets K1, · · · , KN .

Then each pair (Ki, Q), i ∈ {1, · · · , N} is admissible and

Pinv(f,K,Q) = max
1≤i≤N

Pinv(f,Ki, Q).

Proof. By Proposition 2.1.7 (iii), we have that each (Ki, Q) is admissible and Pinv(f,Ki, Q) ≤

Pinv(f,K,Q), for all i ∈ {1, · · · , N}, hence

max
1≤i≤N

Pinv(f,Ki, Q) ≤ Pinv(f,K,Q).
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In order to show the reverse inequality, given ε > 0 and i ∈ {1, · · · , N}, there is

(τ,Ki, Q)-spanning set Si such that

aτ (f,Ki, Q) ≤
∑
ω∈Si

e(Sτf)(ω) < aτ (f,Ki, Q) +
ε

N
.

Then S :=
⋃N
i=1 Si is a (τ,K,Q)-spanning and

aτ (f,K,Q) ≤
∑
ω∈S

e(Sτf)(ω) ≤
N∑
i=1

∑
ω∈Si

e(Sτf)(ω) <

N∑
i=1

aτ (f,Ki, Q) + ε

which shows that

aτ (f,K,Q) ≤
N∑
i=1

aτ (f,Ki, Q).

By Lemma 2.2.2 we obtain

Pinv(f,K,Q) ≤ lim sup
τ→∞

1

τ
log

N∑
i=1

aτ (f,Ki, Q) ≤ max
1≤i≤N

Pinv(f,Ki, Q).

Remark 2.2.4. Note that Proposition 2.2.3 can not be generalized to the case of a countable

cover of K. For instance, see [27, Remark 7.3] when f is the null function.

Next we discuss changes in the considered set Q.

Proposition 2.2.5. Let f ∈ C(U,R) and Q ⊂ X a compact controlled invariant set. Assume

that Q =
⋃N
i=1Qi with compact controlled invariant sets Q1, . . . , QN . Then

Pinv(f,Q) ≤ max
1≤i≤N

Pinv(f,Qi).

Proof. For every i ∈ {1, . . . , N}, let Si a (τ,Qi)-spanning set and define S :=
⋃N
i=1 Si.

Then S is a (τ,Q)-spanning set with

∑
ω∈S

e(Sτf)(ω) ≤
N∑
i=1

∑
ω∈Si

e(Sτf)(ω).

With

aτ (f,Qi) = inf

{∑
ω∈Si

e(Sτf)(ω); Si (τ,Qi)-spanning

}
,
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we have aτ (f,Q) ≤
∑N

i=1 aτ (f,Qi). Now Lemma 2.2.2 implies that

Pinv(f,Q) ≤ lim sup
τ→∞

1

τ
log

N∑
i=1

aτ (f,Qi) ≤ max
1≤i≤N

Pinv(f,Qi).

The next result concerns to the invariance pressure on the product of two control

systems. To this end, consider Σ1 = (R,M1, U1,U1, ϕ1) and Σ2 = (R,M2, U2,U2, ϕ2).

Then we can built the control system Σp = (R,M1×M2, U1×U2,U1×U2, ϕ1×ϕ2) where

ϕ1 × ϕ2 : R× (M1 ×M2)× (U1 × U2) is given by

(ϕ1 × ϕ2) (τ, z, ω) = (ϕ1 × ϕ2) (τ, (x, y), (ω1, ω2)) = (ϕ1(τ, x, ω1), ϕ2(τ, y, ω2)).

Proposition 2.2.6. Let fi ∈ C(Ui,R) and let (Ki, Qi) be an admissible pair for Σi, i = 1, 2.

Then

Pinv(f1 × f2, K1 ×K2, Q1 ×Q2; Σp) ≤ Pinv(f1, K1, Q1; Σ1) + Pinv(f2, K2, Q2; Σ2),

where f1 × f2 ∈ C(U1 × U2,R) is defined by (f1 × f2)(u, v) = f1(u) + f2(v).

Proof. Note that (K1 ×K2, Q1 × Q2) is admissible for Σp. Furthermore, for each ε > 0

there is a (τ,Ki, Qi)-spanning set Si, i = 1, 2, such that

0 < aτ (fi, Ki, Qi) ≤
∑
ωi∈Si

e(Sτfi)(ωi) < aτ (fi, Ki, Qi) + δ, i = 1, 2,

where

δ :=

√
[aτ (f1, K1, Q1) + aτ (f2, K2, Q2)]2 + 4ε− [aτ (f1, K1, Q1) + aτ (f2, K2, Q2)]

2
.

Then S := S1 × S2 ⊂ U1 × U2 is a (τ,K1 ×K2, Q1 ×Q2)-spanning set and

aτ (f1 × f2, K1 ×K2, Q1 ×Q2) ≤
∑
ω∈S

e(Sτ (f1×f2))(ω) =
∑

(ω1,ω2)∈S1×S2

e(Sτf1))(ω1)e(Sτf2))(ω2)

=
∑
ω1∈S1

e(Sτf1))(ω1)
∑
ω2∈S2

e(Sτf2))(ω2)

< aτ (f1, K1, Q1) · aτ (f2, K2, Q2) + ε.
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Taking ε decreasing to 0 we get

aτ (f1 × f2, K1 ×K2, Q1 ×Q2) ≤ aτ (f1, K1, Q1) · aτ (f2, K2, Q2).

Therefore

Pinv(f1 × f2, K1 ×K2, Q1 ×Q2) = lim sup
τ→∞

1

τ
log an(f1 × f2, K1 ×K2, Q1 ×Q2)

≤ lim sup
τ→∞

1

τ
log [aτ (f1, K1, Q1) · aτ (f2, K2, Q2)]

= Pinv(f1, K1, Q1) + Pinv(f2, K2, Q2).

Open Question 3. The topological pressure of a continuous transformation on a compact

metric space satisfies the equality presented in Proposition 2.2.6 (see [39, Theorem 9.8 (iv)]). Is

this equality verified in the case of invariance pressure, even in the case when K = Q?

Next we prove the power rule for invariance pressure. Consider initially a continuous-

time control system Σ = (R,M, U,U , ϕ) and an admissible pair (K,Q). For every real

number s > 0, we can define Σs = (R,M, U,U , ϕs) given by the differential equations

ẋ(t) = s · F (x(t), ω(t)), ω ∈ U ,

whose trajectories are given by ϕs(t, x, ω) = ϕ(st, x, ω̃), where ω̃(t) := ω(t/s). In fact,

d

dt
ϕs(t, x, ω) =

d

dt
ϕ(st, x, ω̃) = s · F (ϕ(st, x, ω̃), ω̃(st))

= s · F (ϕ(st, x, ω̃), ω(t)) = s · F (ϕs(t, x, ω), ω(t))

and the result follows from uniqueness of solution. The Power rule is stated as:

Proposition 2.2.7. If s > 0 and (K,Q) is an admissible pair for Σ, then it is also admissible

for Σs and for each f ∈ C(U,R)

Pinv(f,K,Q; Σs) = s · Pinv(f,K,Q; Σ).

Proof. It is easy to see that (K,Q) is admissible for Σs. Note that if S ⊂ U is an

(sτ,K,Q)-spanning set for Σ, then Ss := {ω(s + ·); ω ∈ S} is a (τ,K,Q)-spanning
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set for Σs with the same number of elements. Analogously, every (τ,K,Q)-spanning

set for Σs gives an (sτ,K,Q)-spanning set for Σ with the same number of elements.

This proves that

asτ (f,K,Q; Σ) = aτ (f,K,Q; Σs), ∀ τ > 0.

Hence, by Proposition 2.2.1 we get

Pinv(f,K,Q; Σs) = lim sup
τ→∞

1

τ
log aτ (f,K,Q; Σs) = lim sup

τ→∞

1

τ
log asτ (f,K,Q; Σ)

= s · lim sup
τ→∞

1

sτ
log asτ (f,K,Q; Σ) = s · Pinv(f,K,Q; Σ).

2.2.1 Invariance pressure under conjugacy

We reserve this subsection to show that the invariance pressure is preserved by a cer-

tain kind of conjugacy between two control systems, which we define in sequence. The

invariance under conjugacy is also satisfied for topological pressure, in the case of dy-

namical systems, and for invariance entropy, in the case of control systems. However

the conditions of conjugacy which we require here is stronger than those required in

[27, Definition 2.4].

Definition 2.2.8. Consider Σ1 = (R,M1, U1,U1, ϕ1) and Σ2 = (R,M2, U2,U2, ϕ2) two con-

trol systems. Let π : R+ ×M1 → M2, (t, x) 7→ πt(x), and H : U1 → U2 be continuous maps

such that the induced map hH : U1 → U2, hH(ω)(t) := H(ω(t)) for all t ∈ R, satisfies

πt(ϕ1(t, x, ω)) = ϕ2(t, π0(x), hH(ω)) for all t ∈ R+, x ∈M1 and ω ∈ U1.

Then (π,H) is called a time-variant semi-conjugacy from Σ1 to Σ2. If the maps πt : M1 →

M2, t ∈ R+, and H : U1 → U2 are homeomorphisms, we call (π,H) a time-variant conju-

gacy from Σ1 to Σ2.

Analogously we define a time-invariant semi-conjugacy and conjugacy from Σ1 to Σ2

if π is independent of t ∈ R+.

Proposition 2.2.9. Consider two control systems as in Definition 2.2.8 and let (π,H) be a

time-variant semi-conjugacy from Σ1 to Σ2. Further assume that (K,Q) is an admissible pair
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for Σ1 and

πt(Q) ⊂ π0(Q) for all t > 0.

Then (π0(K), π0(Q)) is an admissible pair for Σ2 and

Pinv(f ◦H,K,Q; Σ1) ≥ Pinv(f, π0(K), π0(Q); Σ2)

for all f ∈ C(U2,R). Moreover, if Q is compact and the family {πt}t∈R+ is pointwise equicon-

tinuous, then

Pinv,out(f ◦H,K,Q; Σ1) ≥ Pinv,out(f, π0(K), π0(Q); Σ2)

for all f ∈ C(U2,R).

Proof. In order to show that (π0(K), π0(Q)) is an admissible pair, note that since π is

continuous, the set π0(K) is compact. Let y ∈ π0(K), then y = π0(x) for some x ∈ K.

Since (K,Q) is an admissible pair, there is ω ∈ U1 such that ϕ(R+, x, ω) ⊂ Q, and we

obtain

ϕ2(t, y, hH(ω)) = πt(ϕ1(t, x, ω)) ∈ πt(Q) ⊂ π0(Q).

Therefore (π0(K), π0(Q)) is an admissible pair for Σ2.

Now, let S ⊂ U1 be a (τ,K,Q)-spanning set. With the same arguments as above, we

find that hH(S) ⊂ U2 is (τ, π0(K), π0(Q))-spanning. Hence

∑
µ∈hH(S)

e(Sτf)(µ) =
∑
ω∈S

e(Sτf)(H◦ω) =
∑
ω∈S

e(Sτ (f◦H))(ω)

for every (τ,K,Q)-spanning set S , which implies that

aτ (f, π0(K), π0(Q)) ≤ aτ (f ◦H,K,Q).

Therefore Pinv(f, π0(K), π0(Q)) ≤ Pinv(f ◦H,K,Q).

Now assume that Q is compact. Let %1 denote a metric on M1 and %2 a metric on

M2. By compactness of Q, the pointwise equicontinuity of {πt}t∈R+ on Q is uniform,

hence for all ε > 0, there exists δ > 0 such that for all t ∈ R+, x ∈ Q and y ∈ M1 the

condition %1(x, y) < δ implies %2(πt(x), πt(y)) < ε.

Let S ⊂ U1 be a (τ,K,Nδ(Q))-spanning set with δ = δ(ε) as above. Note that if
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y ∈ π0(K), then y = π0(x) for some x ∈ K. For ω ∈ S such that ϕ1([0, τ ], x, ω) ⊂ Nδ(Q)

and for each t ∈ [0, τ ], there exists xt ∈ Q with %1(xt, ϕ1(t, x, ω)) < δ. This implies that

for all t ∈ [0, τ ]

%2(ϕ2(t, y, hH(ω)), πt(xt)) = %2(πt(ϕ1(t, x, ω)), πt(xt)) < ε.

This shows that hH(S) ⊂ U2 is a (τ, π0(K), Nε(π0(Q)))-spanning set. We conclude that

aτ (f, π0(K), Nε(π0(Q))) ≤ aτ (f ◦H,K,Nε(Q)), and hence

Pinv,out(f, π0(K), π0(Q)) ≤ Pinv,out(f ◦H,K,Q).

Remark 2.2.10. It is easy to see that if (π,H) is a time-variant conjugacy from Σ1 to Σ2, then

(ψ,H−1) with ψt(y) := π−1
t (y) is a time-variant conjugacy from Σ2 to Σ1. In this case, we

have, under the assumptions of the previous proposition,

Pinv(f ◦H,K,Q; Σ1) = Pinv(f, π0(K), π0(Q)); Σ2).

A similar argument holds for time-invariant conjugacies.

Example 2.2.11. Consider two linear control systems in Rd

Σ1 : ẋ(t) = A1x(t) +B1ω(t) and Σ2 : ẋ(t) = A2x(t) +B2ω(t),

where ω(t) is in a compact set U ⊂ Rm for all t ∈ R, Ai ∈ Rd×d and Bi ∈ Rd×m for i = 1, 2. If

there is a nonsingular d × d matrix T such that A2 = TA1T
−1 and B2 = TB1, then (T, idU)

is a time-invariant conjugacy from Σ1 to Σ2. In fact

T (ϕ1(t, x, ω)) = T

(
etA1x+

∫ t

0

e(t−s)A1B1ω(s)ds

)
= T

(
etT
−1A2Tx+

∫ t

0

e(t−s)T−1A2TT−1B2ω(s)ds

)
= T

(
T−1etA2Tx+

∫ t

0

T−1e(t−s)A2TT−1B2ω(s)ds

)
= etA2Tx+

∫ t

0

e(t−s)A2B2ω(s)ds = ϕ2(t, Tx, hidU (ω)).
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In this case, it follows for every admissible pair (K,Q), and all f ∈ C(U,R)

Pinv(f,K,Q; Σ1) = Pinv(f, T (K), T (Q)); Σ2).

Remark 2.2.12. All the results of this section can be made for discrete-time control systems,

assuming that the control-valued space U is compact.

Remark 2.2.13. At the beginning of the twentieth century, Caratheodory and Hausdorff orig-

inated the notion of dimension of invariant sets, one of the most important characteristics of

dynamical systems. The fact that the topological pressure is a characteristic of dimension type

was first noticed in [33] and (implicitly) by Bowen [5]. The dimensional approach of invariance

entropy was introduced recently by Huang and Zhong [23] and the dimension characteristics

of invariance pressure was presented also by Zhong and Huang [42].



CHAPTER 3

INVARIANCE PRESSURE ON SPECIAL SETS

In this chapter we present other ways to derive the invariance pressure of a continuous-

time control system Σ = (R,M, U,U , ϕ) when the set Q of an admissible pair (K,Q)

satisfies particular properties. The arguments used here is an adaptation of the results

presented in Kawan [26] and [27, Sections 2.2 and 4.2]. Firstly, when Q is an isolated

set, that is, a set where the trajectories that are reasonably close Q are actually inside

Q. In this case, we will see that the limit for ε ↘ 0 in the definition of Pinv,out(f,K,Q)

becomes superfluous. Secondly, for a inner control setQ, or in other words, a set where

the control system is controllable (in a sense that we will formulate more rigorously)

in a neighborhood of it and, in this situation, we will obtain that the limit superior in

this definition can be replaced by a limit inferior.

Thirdly, we investigate how the invariance pressure of a pair (K,Q) behaves when

Q is a control set (or a closure of it) with nonempty interior, and we will note that the

invariance pressure is constant when we vary the compacts with nonempty interior

K inside Q. Adapting the ideas from [25, Theorem 4.4], we also get an upper bound

for the invariance pressure of an admissible pair (K,Q) of the linear control system

in terms of the spectrum of the matrix A. In the last section we get lower bounds

for the invariance pressure in terms of volume growth rates for a control system on a

Riemannian manifold.
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3.1 Isolated Sets

In the dynamical systems environment, the definitions of topological pressure via sep-

arated and spanning sets of an expansive homeomorphism are not necessary to take

the limit ε↘ 0 as we can see in [39, Theorem 9.6 (ii)]. This consequence also holds for

invariance pressure when we are considering isolated sets presented in [24].

We assume that Σ satisfies the following additional properties:

1) The set U of admissible control functions is endowed with a topology that makes

it a sequentially compact space, that is, every sequence in U has a convergent

subsequence;

2) The solution map ϕ : R+ ×M × U → M is continuous when U is endowed with

the above topology.

These properties are satisfied in particular for a control-affine system (see Example

1.3.2) when U is provided with the weak∗ topology.

Remember that for x ∈ M and A ⊂ M , the distance between x to A, denoted by

dist(x,A), is defined by

dist(x,A) = inf
y∈A

d(x, y),

where d is a metric on M .

A compact set Q ⊂ M is called isolated if there exists δ0 > 0 such that for all

(x, ω) ∈ Nδ0(Q)× U the following implication holds:

ϕ(R+, x, ω) ⊂ Nδ0(Q)⇒ ϕ(R+, x, ω) ⊂ Q. (3.1-1)

The lemma in sequence will help us to show the main result of this section. The

proof can be found in [27, Lemma A.3]

Lemma 3.1.1. Let (X, %) be a locally compact metric space. Then for every compact setK ⊂ X

there exists some ε > 0 such that Nε(K) is compact.

Proposition 3.1.2. Let (K,Q) be an admissible pair such that Q is compact and isolated with

constant δ0. Then it holds, for all f ∈ C(U,R)

Pinv,out(f,K,Q) = Pinv(f,K,Nε(Q)) for all ε ∈ (0, δ0],
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Proof. Since M is locally compact, by Lemma 3.1.1 we may assume that δ0 is small

enough that Nδ0(Q) is compact, since assumption (3.1-1) is also satisfied for smaller δ0.

By an argument, similar to [27, Proposition 2.2.17], we can see that for all ρ > 0 and

for all ε ∈ (0, δ0] there is n ∈ N such that for all (x, ω) ∈ Nδ0(Q)× U we get

max
t∈[0,n]

dist(ϕ(t, x, ω), Q) ≤ ε

implies dist(x,Q) < ρ.

Now let 0 < ε1 < ε2 ≤ δ0. Then there exists n ∈ N such that for all (x, ω) ∈

Nδ0(Q) × U it holds that maxt∈[0,n] dist(ϕ(t, x, ω), Q) ≤ ε2 implies dist(x,Q) < ε1. For

arbitrary τ > 0, let S be a (n+τ,K,Nε2(Q))-spanning set. For x ∈ K, there exists ωx ∈ S

with ϕ([0, n+ τ ], x, ωx) ⊂ Nε2(Q). For every s ∈ [0, τ ], we obtain

max
t∈[0,n]

dist(ϕ(t, ϕ(s, x, ωx),Θsωx), Q) = max
t∈[0,n]

dist(ϕ(t+ s, x, ωx), Q) < ε2.

Hence we have dist(ϕ(s, x, ωx), Q) < ε1 for all s ∈ [0, τ ], which implies that S is a

(τ,K,Nε1(Q))-spanning set. Therefore, given g ∈ C(U,R), g ≥ 0, we get

aτ (g,K,Nε1(Q)) ≤ an+τ (g,K,Nε2(Q)), ∀τ > 0,

which implies Pinv(f,K,Nε1(Q)) ≤ Pinv(f,K,Nε2(Q)), for all f ∈ C(U,R).

By Proposition 2.1.7 (ii) we have Pinv(f,K,Nε2(Q)) ≤ Pinv(f,K,Nε1(Q)) and the

proof is complete.

3.2 Inner Control Sets

In this section, we will show that the limit superior in the definition of invariance

pressure of a control set can be replaced by the limit inferior, if certain controllabil-

ity properties near the control set are satisfied. This change holds in general (and, in

fact, is a well-known result) for the case of topological pressure of a dynamical system

(see, for instance, [39, Theorem 9.4 (vii) and (viii)]) both in definition via spanning and

separated sets. However, for invariance pressure this property is not clear in general.

A control setD⊂M is called an inner control set if there exists an increasing family
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of compact and convex sets {Uρ}ρ∈[0,1] in Rm (i.e., Uρ1 ⊂ Uρ2 for ρ1 < ρ2), such that for

every ρ ∈ [0, 1] the control system Σ with control range Uρ (instead of U ) has a control

set Dρ with nonvoid interior and compact closure, and the following conditions are

satisfied:

i) U = U0 and D = D0;

ii) Dρ1 ⊂ int(Dρ2) whenever ρ1 < ρ2;

iii) For every neighborhood W of D there is ρ ∈ [0, 1) with Dρ ⊂ W .

This notion (slightly modified) is taken from Kawan [27, Definition 2.6]. Below, we

will consider an inner control set D = D0 (corresponding to the control range U = U0)

and characterize the invariance pressure of the controlled invariant set Q = D with

respect to the larger control range U1 ⊃ U0.

The following result shows that for admissible pairs (K,Q) where Q is the closure

of an inner control set, the limit superior in the definition of outer invariance pressure

can be replaced by the limit inferior. The proof follows [27, Proposition 2.16].

Proposition 3.2.1. Let Q be the closure of an inner control set D of a control system Σ. Then

for every compact set K ⊂ D, the pair (K,Q) is admissible for the control system with control

range U1 and if intK 6= ∅ we have

Pinv,out(f,K,Q) = lim
ε↘0

lim inf
τ→∞

1

τ
log aτ (f,K,Nε(Q)), ∀f ∈ C(U,R).

Proof. First observe that (by the Tietze extension theorem) every continuous function

f ∈ C(U,R) can be extended to a continuous function f ∈ C(U1,R). We fix such an

extension. Our proof will show that Pinv,out(f,K,Q) does not depend on this extension.

From conditions (ii) and (iii) of inner control sets, it follows that exists a monoton-

ically decreasing sequence (ρn)n∈N in [0, 1) with Dρn ⊂ N1/n(Q) for all n ∈ N. Since

Q = D ⊂ int(Dρn) for all n ∈ N, we can find a monotonically decreasing sequence

(εn)n∈N of positive real numbers with εn ↘ 0 such that Nεn(Q) ⊂ Dρn for all n ∈ N.

For each n ∈ N it is possible to steer all points of Nεn(Q) to K with finitely many con-

trol functions using the control range Uρn . In fact, since Nεn(Q) and K are subsets of

the control set Dρn for each n, then for all x ∈ Nεn(Q), there exist tnx > 0 and µnx ∈ U ,
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µnx(t) ∈ Uρn for all t, such that ϕ(tnx, x, µ
n
x) ∈ intK by the approximate controllability of

the control set Dρn . Continuity implies that there exists a neighborhood W n
x of x such

that ϕ(tnx,W
n
x , µ

n
x) ⊂ intK. By compactness there exist xn1 , . . . , xnkn ∈ Nεn(Q) such that

Nεn(Q) ⊂
kn⋃
i=1

W n
xi
.

Denote Sn := {µn1 , . . . , µnkn}, where µnj = µnxj , and τnj := tnxj . Observe that given x ∈

Nεn(Q), the trajectoryϕ(t, x, µnj ), t ∈ [0, τnj ], does not leave the control setDρn ⊂ N1/n(Q)

by the no-return property.

For every τ > τnM := max{τnj ; j = 1, . . . kn} consider a finite (τ,K,Nε(Q))-spanning

set S = {ω1, . . . , ωk}, where ε ∈ (0, εn] and the controls take values in U0. Let S̃ be the

set consisting of the functions

νnij(t) =

 ωi(t), if t ∈ [0, τ − τnj ]

µnj (t− τnj ), if t ∈ (τ − τnj , τ ]
, 1 ≤ i ≤ k and 1 ≤ j ≤ kn.

Thus for every x ∈ K there is a control in S̃ keeping the corresponding trajectory in

Nε(Q) up to time τ − τnj and then steering the solutions back to K. Now, for m ∈

N, define Ŝ as the set obtained by m iterations of the elements of S̃. Hence Ŝ is a

(mτ,K,N1/n(Q))-spanning set with #Ŝ ≤ (#S)m · (#Sn)m <∞.

We compute for ν ∈ Ŝ

(Smτf)(ν) =

∫ mτ

0

f(ν(t))dt =

∫ τ

0

f(νi1,j1(t))dt+ · · ·+
∫ mτ

(m−1)τ

f(νim,jm(t))dt

=

∫ τ−τj1

0

f(ωi1(t))dt+

∫ τ

τ−τj1

f(µnj1(t− τ
n
j1

))dt+ · · ·+

+

∫ mτ−τjm

(m−1)τ

f(ωim(t− (m− 1)τ))dt+

∫ mτ

mτ−τjm
f(µnjm(t− (mτ − τnjm)))dt

=

∫ τ−τj1

0

f(ωi1(t))dt+

∫ τj1

0

f(µnj1(t))dt+ · · ·+

+

∫ τ−τjm

0

f(ωim(t))dt+

∫ τjm

0

f(µnjm(t))dt

≤ (Sτf)(ωi1) + · · ·+ (Sτf)(ωim) + 2mτnM sup f.
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This implies for all (τ,K,Nε(Q))-spanning sets S and ε ∈ (0, εn]

amτ (f,K,N1/n(Q)) ≤
∑
ν∈Ŝ

e(Smτf)(ν)

≤ e2mτnM sup f ·
∑

ωil∈S; 1≤l≤m

e(Sτf)(ωi1 )+···+(Sτf)(ωim )

≤ e2mτnM sup f ·

(∑
ω∈S

e(Sτf)(ω)

)
· · ·

(∑
ω∈S

e(Sτf)(ω)

)

= e2mτnM sup f ·

(∑
ω∈S

e(Sτf)(ω)

)m

.

It follows that amτ (f,K,N1/n(Q)) ≤ e2mτnM sup f · (aτ (f,K,Nε(Q)))m for all m ∈ N, τ > 0

and ε ∈ (0, εn]. By discretization of time we get

Pinv(f,K,N1/n(Q)) = lim sup
m→∞

1

mτ
log amτ (f,K,N1/n(Q))

≤ lim sup
m→∞

1

mτ
(2mτnM sup f +m log aτ (f,K,Nε(Q)))

=
2

τ
τnM sup f +

1

τ
log aτ (f,K,Nε(Q)).

Therefore we obtain

Pinv(f,K,N1/n(Q))

≤ lim
ε↘0

lim inf
τ→∞

(
2

τ
τnM sup f + lim sup

τ→∞

1

τ
log aτ (f,K,Nε(Q))

)
= lim

ε↘0
lim inf
τ→∞

1

τ
log aτ (f,K,Nε(Q)).

Since this inequality holds for every n ∈ N, the assertion follows.

Remark 3.2.2. Note that it does not necessarily follow that the limit

lim
τ→∞

1

τ
log aτ (f,K,Nε(Q))

exists for any ε > 0.
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3.3 Control Sets

In this section we present an interesting fact that invariance pressure of control sets

satisfies: If D is a control set with nonempty interior, then for all compact K ⊂ D,

(K,D) is an admissible pair and Pinv(f,K,D) does not depend on K, provided that K

has nonvoid interior. This fact will be extremely important to obtain an upper bound

for Pinv(f,K,Q) of linear control systems in terms of the positive real parts of the eigen-

values of A.

As an application we will consider a simple mechanical system composed by a

pendulum where external torques are applied in order to "control" its position and the

velocity.

The ideas used in this section follow from Kawan [25] and [27, Chapter 5].

Proposition 3.3.1. Let Q ⊂M be a set with the no-return property. Assume that (K1, Q) and

(K2, Q) are two admissible pairs such that K2 has nonempty interior and

∀x ∈ K1 ∃ωx ∈ U ∃τx > 0 : ϕ(τx, x, ωx) ∈ intK2.

Then for all f ∈ C(U,R)

Pinv(f,K1, Q) ≤ Pinv(f,K2, Q).

Proof. Note that if there exists τ0 such that aτ (f,K2, Q) = +∞ for all τ ≥ τ0, then

Pinv(f,K2, Q) = +∞ and hence the assertion holds.

If this is not the case, we can get a sequence τk →∞ such that aτk(f,K2, Q) is finite

for all k. For all x ∈ K1, let ωx ∈ U and τx > 0 as in the assumption. Since ϕ(τx, ·, ωx)

is continuous, we find, for every x ∈ K1, an open neighborhood Vx of x such that

ϕ(τx, Vx, ωx) ⊂ intK2. By the no-return property of Q, we have ϕ([0, τx], y, ωx) ⊂ Q, for

all y ∈ K1 ∩ Vx. The family {Vx}x∈K1 is an open cover of K1 and by compactness there

exist x1, . . . , xn ∈ K1 withK1 ⊂ ∪ni=1Vxi . Now, let S := {µ1, . . . , µk} be a finite (τ,K2, Q)-

spanning set, for some τ > τM − τm, where τM := max1≤i≤n τxi and τm := min1≤i≤n τxi .

For every index pair (i, j) with 1 ≤ i ≤ n, 1 ≤ j ≤ k such that there exists x ∈

K1 with yx := ϕ(τxi , x, ωxi) ∈ intK2 and ϕ([0, τ ], yx, µj) ⊂ Q, we can define a control



3.3 Control Sets 63

function

νij(t) =

 ωxi(t), if t ∈ [0, τxi ]

µj(t− τxi), if t > τxi

.

Define the set S̃ of all these control functions. Let τ̃ := τ + τm, hence τ ≥ τ̃ − τM . Then

S̃ is a (τ̃ , K1, Q)-spanning set by construction, and consequently, for all f ∈ C(U,R),

f ≥ 0, we have

(Sτ̃f)(νij) = (Sτxif)(ωxi) +

∫ τ̃

τxi

f(µj(t− τxi))dt

= (Sτxif)(ωxi) +

∫ τ̃−τxi

0

f(µj(t))dt

= (Sτxif)(ωxi) + (Sτ̃−τxif)(µj)

≤ (Sτxif)(ωxi) + (Sτf)(µj).

Hence

aτ (f,K1, Q) ≤ aτ̃ (f,K1, Q) ≤
∑
νij∈S̃

e(Sτ̃f)(νij) ≤
∑

1≤i≤n, µ∈S

e(Sτxi f)(ωxi )e(Sτf)(µ)

≤
∑

1≤i≤n

e(Sτxi f)(ωxi ) ·
∑
µ∈S

e(Sτf)(µ) ≤ ne‖f‖τM
∑
µ∈S

e(Sτf)(µ),

because 0 ≤ τ̃ − τxi ≤ τ . Since this inequality holds for all finite (τ,K2, Q)-spanning

sets, we have

aτ (f,K1, Q) ≤ ne‖f‖τMaτ (f,K2, Q), τ > τM − τm,

where ne‖f‖τM is constant in τ . Therefore, we obtain for all f ∈ C(U,R),f ≥ 0,

Pinv(f,K1, Q) ≤ Pinv(f,K2, Q).

Now consider an arbitrary f ∈ C(U,R). Then f̃ ∈ C(U,R) given by f̃(u) = f(u)− inf f

satisfies f̃ ≥ 0. Using Proposition 2.1.11 (ii) it follows that

Pinv(f,K1, Q) = Pinv(f̃ , K1, Q) + inf
u∈U

f(u) ≤ Pinv(f̃ , K2, Q) + inf
u∈U

f(u)

= Pinv(f,K2, Q)− inf
u∈U

f(u) + inf
u∈U

f(u)

= Pinv(f,K2, Q).
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As an immediate consequence we can see that for all f ∈ C(U,R), Pinv(f, ·, D) is

constant when we vary the compacts with nonvoid interior K inside D.

Corollary 3.3.2. Let D ⊂M be a control set and let K1, K2 ⊂ D be two compact subsets with

nonempty interior. Then (K1, D) and (K2, D) are admissible pairs and for all f ∈ C(U,R) we

have

Pinv(f,K1, D) = Pinv(f,K2, D).

Proof. This follows, since control sets with nonvoid interior satisfy the no-return prop-

erty and (K,D) is admissible for any K ⊂ D, because all control sets are controllable

invariant.

We consider a class of linear control systems presented in Example 1.3.1 where A is

hyperbolic (that is, A has no eigenvalues on the imaginary axis). Suppose that the pair

(A,B) is controllable (that is, rank
[
B AB · · · Ad−1B

]
= d). Consequently, the control

system is locally accessible. For simplicity, we will denote such a system Σlin.

The following result generalizes and improves [6, Theorem 27] (where the outer

invariance pressure was considered). The proof follows Kawan [25, Theorem 4.3], [27,

Theorem 5.1], considerably simplified for the linear situation.

Theorem 3.3.3. Consider a linear control system of the form Σlin and assume that the pair

(A,B) is controllable, thatA is hyperbolic and the control range U is a compact neighborhood of

the origin in Rm. Let D be the unique control set with nonempty interior and let f ∈ C(U,R).

Then for every compact set K ⊂ D the pair (K,D) is admissible and

Pinv(f,K,D) ≤
∑

λ∈σ(A)

max{0, nλRe(λ)}+ inf
1

T

∫ T

0

f(ω(s))ds,

where σ(A) denotes the spectrum of A, nλ is the algebraic multiplicity of λ ∈ σ(A) and the

infimum is taken over all T > 0 and all T -periodic controls ω(·) with a T -periodic trajectory

x(·) in intD such that {ω(t); t ∈ [0, T ]} is contained in a compact subset of intU .

Proof. We will construct a compact subset K ⊂ D with nonvoid interior such that

Pinv(f,K,D) ≤
∑

λ∈σ(A)

max{0, nλRe(λ)}+ inf
1

T

∫ T

0

f(ω0(s))ds.
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Then the assertion will follow, since every compact subset of D is contained in a com-

pact subset K of D with nonvoid interior and the invariance pressure is independent

of the choice of such a set K by Corollary 3.3.2.

For the proof consider a τ0-periodic control ω0(·) with τ0-periodic trajectory as in

the statement of the theorem. We can transform A into real Jordan form R without

changing the invariance pressure, cf. Example 2.2.11 and, without loss of generality,

we can write

x0 = eRτ0x0 +

∫ τ0

0

eR(τ0−s)Bω0(s)ds. (3.3-2)

Step 1: Choose a basis B of Rd adapted to the real Jordan structure of R and let

L1(R), . . . , Lr(R) be the different Lyapunov spaces of R, that is, the sums of the gener-

alized eigenspaces corresponding to eigenvalues with the same real part ρj . Then we

have the decomposition

Rd = L1(R)⊕ · · · ⊕ Lr(R).

Let dj = dimLj(R) and denote the restriction of R to Lj(R) by Rj . Now take an inner

product on Rd such that the basis B is orthonormal with respect to this inner product

and let ‖·‖ denote the induced norm.

Step 2: We fix some constants: Let S0 be a real number which satisfies

S0 >
r∑
j=1

max(0, djρj)

and choose ξ = ξ(S0) > 0 such that

0 < dξ < S0 −
r∑
j=1

max(0, djρj).

Let δ ∈ (0, ξ) be chosen small enough such that ρj < 0 implies ρj + δ < 0 for all j. It

follows that there exists a constant c = c(δ) ≥ 1 such that for all j and for all k ∈ N

∥∥etRj∥∥ ≤ ce(ρj+δ)t for all t ≥ 0.
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For every t > 0 we define positive integers

Mj(t) =


⌊
e(ρj+ξ)t

⌋
+ 1 if ρj ≥ 0

1 if ρj < 0
.

Moreover, we define a function β : (0,∞)→ (0,∞) by

β(t) = max
1≤j≤r

[
e(ρj+δ)t

√
dj

Mj(t)

]
, t > 0.

If ρj < 0, then ρj + δ < 0 and Mj(t) ≡ 1. This implies that e(ρj+δ)t/Mj(t) converges to

zero for t→∞. If ρj ≥ 0, we have Mj(t) ≥ e(ρj+ξ)t and hence

e(ρj+δ)t

√
dj

Mj(t)
≤ e(ρj+δ)t

√
dj

e(ρj+ξ)t
= e(δ−ξ)t√dj. (3.3-3)

Since δ ∈ (0, ξ), we have δ − ξ < 0 and hence the terms above converge to zero for

t→∞. Thus, also β(t)→ 0 for t→∞. Since we assume controllability of (A,B) there

exists C > 0 such that for every λ ∈ Rd there is a control ω ∈ L∞(0, τ,Rm) with

ϕ(τ0, λ, ω) = eRτ0λ+

∫ τ0

0

eR(τ0−s)Bω(s)ds = 0 and ‖ω‖∞ ≤ C ‖λ‖ . (3.3-4)

The inequality follows by the inverse mapping theorem.

For b0 > 0 let C be the d-dimensional compact cube C in Rd centered at the origin

with sides of length 2b0 parallel to the vectors of the basis B. Choose b0 small enough

such that, with x0 := x(0)

K := x0 + C ⊂ D

and B(ω0(t), Cb0) ⊂ U for almost all t ∈ [0, τ0]. This is possible, since x0 ∈ intD and

almost all values ω0(t) are in a compact subset of the interior of U .

Step 3. Let ε > 0 and τ = kτ0 with k ∈ N. We may take k ∈ N large enough such

that
d

τ
log 2 < ε. (3.3-5)

Furthermore, we may choose b0 small enough such that Cb0 < ε. Partition C by di-

viding each coordinate axis corresponding to a component of the jth Lyapunov space

Lj(R) into Mj(τ) intervals of equal length. The total number of subcuboids in this
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partition of C is
∏r

j=1 Mj(τ)dj .

Next we will show that it suffices to take
∏r

j=1Mj(τ)dj control functions to steer the

solutions from all states in x0 + C back to x0 + C in time τ such that the controls are

within distance ε to ω0.

Let λ be the center of a subcuboid. By (3.3-4) there exists ω ∈ L∞(0, τ,Rm) such that

ϕ(τ, λ, ω) = 0 and ‖ω‖∞ ≤ C ‖λ‖ ≤ Cb0 < ε.

Hence ω(t) ∈ U for a.a. t ∈ [0, τ ] and, using (3.3-2) and linearity, we find that x0 + λ is

steered by ω0 + ω in time τ = kτ0 to x0,

ϕ(τ, x0 + λ, ω0 + ω) = ϕ(τ, x0, ω0) + ϕ(τ, λ, ω) = x0. (3.3-6)

Now consider an arbitrary point x ∈ C. Then it lies in one of the subcuboids and we

denote the corresponding center of this subcuboid by λ with associated control ω. We

will show that ω0 + ω also steers x0 + x back to x0 + C. Observe that

‖x− λ‖ ≤ b0

Mj(τ)

√
dj.

This implies that

∥∥eτRx− eτRλ∥∥ ≤ ∥∥e(kτ0Rj)
∥∥ ‖x− λ‖ ≤ ce(ρj+δ)kτ0

b0

Mj(kτ0)

√
dj → 0 for k →∞,

and hence for k large enough
∥∥eτRx− eτRλ∥∥ ≤ b0. This implies that the solution

ϕ(t, x0 + x, ω0 + ω) = etR(x0 + x) +

∫ t

0

eR(t−s)B [ω0(s) + ω(s)] ds, t ≥ 0,
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satisfies for k large enough by (3.3-6) and linearity,

‖ϕ(τ, x0 + x, ω0 + ω)− x0‖

=

∥∥∥∥eτR(x0 + x) +

∫ τ

0

eR(τ−s)B [ω0(s) + ω(s)] ds− x0

∥∥∥∥
≤
∥∥eτR(x0 + x)− eτR(x0 + λ)

∥∥+

∥∥∥∥eτR(x0 + λ) +

∫ τ

0

eR(τ−s)B [ω0(s) + ω(s)] ds− x0

∥∥∥∥
≤
∥∥eτRx− eτRλ∥∥+ ‖ϕ(τ, x0 + λ, ω0 + ω)− x0‖

≤ ce(ρj+δ)kτ0
b0

Mj(kτ0)

√
dj ≤ b0.

Hence we have proved that
∏r

j=1Mj(τ)dj control functions are sufficient to steer the

solutions from all states in x0 + C back to x0 + C in time τ . By the no-return property of

control sets it follows that the trajectories do not leave D within the time interval [0, τ ].

By iterated concatenation of these control functions we can construct an (nτ,K,D)-

spanning set S for each n ∈ N with cardinality

(
r∏
j=1

Mj(τ)dj

)n

=

 ∏
j:ρj≥0

(
⌊
e(ρj+ξ)τ

⌋
+ 1)dj

n

.

It follows that

log anτ (f,K,Q) ≤ log
∑
ω∈S

e(Snτf)(ω) = log
∑
ω∈S

e
∫ nτ
0 f(ω(t))dt

= log
∑
ω∈S

e
∫ nτ
0 f(ω0(t))dt+

∫ nτ
0 [f(ω(t))−f(ω0(t))]dt

≤ log

[∑
ω∈S

e
∫ nτ
0 f(ω0(t))dt · e

∫ nτ
0 εdt

]
.
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This implies

1

nτ
log anτ (f,K,Q) ≤ 1

τ

∑
j:ρj≥0

dj log(
⌊
e(ρj+ξ)τ

⌋
+ 1) +

1

nτ

∫ nτ

0

f(ω0(t))dt+ ε

≤ 1

τ

∑
j:ρj≥0

dj log(2e(ρj+ξ)τ ) +
1

τ0

∫ τ0

0

f(ω0(t))dt+ ε

≤ d

τ
log 2 +

1

τ

∑
j:ρj≥0

dj(ρj + ξ)τ +
1

τ0

∫ τ0

0

f(ω0(t))dt+ ε

≤ dξ

τ
+
∑
j:ρj≥0

djρj +
1

τ0

∫ τ0

0

f(ω0(t))dt+ 2ε

< S0 +
1

τ0

∫ τ0

0

f(ω0(t))dt+ 2ε.

Here we have also used (3.3-5). Since ε can be chosen arbitrarily small and S0 arbitrarily

close to
∑r

j=1 max(0, djρj), the assertion of the theorem follows.

Remark 3.3.4. The Theorem 3.3.3 can be generalized for a control set D with compact closure

of a continuous-time control system Σ = (R,M, U,U , ϕ) on a connected smooth manifold M

in the following way: Let D ⊂M be a control set with nonempty interior and compact closure

for the control system Σ. Then for every compact set K ⊂ D, the pair (K,D) is admissible and

for all potentials f ∈ C(U,R) the invariance pressure satisfies

Pinv(f,K,D) ≤ inf
(T,x,ω)


r(x,ω)∑
j=1

max{0, dj(x, ω)ρj(x, ω)}+
1

T

∫ T

0

f(ω(s))ds

 ,

where the infimum is taken over all (T, x, ω) ∈ (0,∞) × intD × U such that the T -periodic

controlled trajectory (ϕ(·, x, ω), ω(·)) is regular on [0, T ] (see [27, Sect. 1.5]), the values

ω(t), t ∈ [0, T ], are in a compact subset of intU , and ρ1(x, ω), . . . , ρr(x, ω), r = r(x, ω),

are the different Lyapunov exponents of (ϕ(·, x, ω), ω(·)) at (x, ω) with corresponding multi-

plicities d1(x, ω), . . . , dr(x, ω) (see [27, Sect. 5.1]). The proof follows the same ideas of [25,

Theorem 4.3].

The following remark is helpful to see the relation to Floquet exponents.

Remark 3.3.5. Consider a τ0-periodic solution of

ẋ(t) = Ax(t) +Bu(t).
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Then the Floquet exponents of the linearized system (linearized with respect to x) are given

by the real parts of the eigenvalues of A and also the algebraic multiplicities coincide. More

generally, the Lyapunov exponents are given by

lim
t→∞

1

t
log ‖Dxϕ(t, x, u)y‖ = lim

n→∞

1

nT
log
∥∥eAnTy∥∥ = λ,

depending on y. In fact, we have to analyze the eigenvalues of the linearization of the map

x 7→ ϕ(τ0, x, u) = eAτ0x +
∫ τ0

0
eA(τ0−s)Bu(s)ds given by Dxϕ(τ0, x, u) = eAτ0 . Thus the

assertion is a consequence of the spectral mapping theorem.

The Remark 3.3.5 shows that

∑
λ∈σ(A)

max{0, nλRe(λ)} =
r∑
j=1

max{0, djρj},

where ρ1, . . . , ρr are the different Lyapunov exponents with corresponding multiplici-

ties of a periodic solution corresponding to a periodic control. This is the term occur-

ring in the estimate for the invariance entropy in Kawan [27, Theorem 5.1].

Corollary 3.3.6. Consider a linear control system of the form Σlin and assume that the pair

(A,B) is controllable, that A is hyperbolic and the control range U is a compact neighborhood

of the origin. LetD be the unique control set, let f ∈ C(U,R) and suppose that minω∈U f(ω) =

f(ω0) with ω0 ∈ intU and there exists x0 ∈ intD with Ax0 +Bω0 = 0.

Then for every compact set K ⊂ D with nonempty interior we have that (K,D) is an

admissible pair and

Pinv(f,K,D) =
∑

λ∈σ(A)

max{0, nλRe(λ)}+ f(ω0).

Proof. This follows by Theorem 3.3.3, since (ω0, x0) is a (trivial) periodic solution in

intU × intD, and for every T -periodic control ω(·)

1

T

∫ T

0

f(ω(s))ds ≥ f(ω0).

Example 3.3.7. Consider the one-dimensional linear control system given by the differential
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ω

α

mg sinα

mg

Figure 3.1: Pendulum.

equations

Σ : ẋ(t) = ax(t) + ω(t), ω ∈ U ,

where a > 0. We assume that the control range U = [−1, 1]. Then the compact interval Q =[
− 1
a
, 1
a

]
is the closure of the unique control set with nonempty interior D = O−(0) =

(
− 1
a
, 1
a

)
of Σ.

Let f ∈ C(U,R) such that f(u0) = inf f for some u0 ∈ intU . Then x0 := −u0
a
∈ intD and

(x0, u0) satisfies ax0 + u0 = 0. By Corollary 3.3.6 we have

Pinv(f,K,Q) = inf f + a.

The next example (cf. [36, Section 1.2]) presents an application of outer invariance

pressure to a mechanical control system and shows that, in this case, this quantity is

related with the exponential growth rate of total impulse of external forces acting on

the system.

Example 3.3.8. Consider a pendulum to which one can apply a torque as an external force (see

Figure 3.1). We assume that friction is negligible, that all of the mass is concentrated at the

end, and that the rod has unit length. From Newton’s law for rotating objects, there results, in

terms of the variable α that describes the counter clockwise angle with respect to the vertical,

the second-order nonlinear differential equation

mα̈(t) +mg sin(α(t)) = ω(t), (3.3-7)

where m is the mass, g the acceleration due to gravity, and u(t) the value of the external torque

at time t (counter clockwise being positive).

The vertical stationary position (α, α̇) = (π, 0) is an equilibrium when the null control
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ω0 ≡ 0 is applied, but a small deviation from this will result in an unstable motion. Let us

assume that our objective is to apply torques as needed to correct such deviations. For small

α− π,

sin(α) = −(α− π) + r(α− π),

when r(t) is a function which satisfies limt→0
r(t)
t

= 0.

Since only small deviations are of interest, we drop the nonlinear part represented by the

term r(t). Thus, with γ := α − π as a new variable, we replace equation (3.3-7) by the linear

differential equation

mγ̈(t)−mgγ(t) = ω(t).

If we denote x1 = γ and x2 = γ̇, then we obtain

Σ1 :

 ẋ1

ẋ2

 =

 0 1

g 0


︸ ︷︷ ︸

=:A

 x1

x2

+

 0

1
m


︸ ︷︷ ︸
=:B

ω, ω(t) ∈ U := [−ε, ε], ε > 0.

Note that the eigenvalues of A are λ± = ±√g. System Σ1 is via the (time-invariant) conjugacy

map (T, idU) conjugate to (cf. Example 2.2.11)

Σ2 :

 ẋ1

ẋ2

 =

 −√g 0

0
√
g


︸ ︷︷ ︸

=:Ã

 x1

x2

+

 1
2m

1
2m


︸ ︷︷ ︸

=:B̃

ω,

because Ã = TAT−1 and B̃ = TB, where

T =
1

2

 −√g 1
√
g 1

 and T−1 =

 − 1√
g

1√
g

1 1

 .
Note that Ã is hyperbolic and the pair (Ã, B̃) is controllable. By Theorem 1.3.10, the unique

control set D̃ with nonvoid interior of Σ2 is

D̃ = O+(0) ∩ O−(0) =

[
− ε

2m
√
g
,

ε

2m
√
g

]
×
(
− ε

2m
√
g
,

ε

2m
√
g

)
.

Then the unique control set with nonvoid interior of Σ1 is given by D := T (D̃) and one



3.4 Lower Bounds 73

computes

D = [−d, d]× (−d, d) with d := ε

√
g + 1

2m
√
g
.

Here for a compact subset K ⊂ D a (τ,K,D)-spanning set S represents a set of external

torques ω that cause the angular position of the pendulum to remain in the interval [−d, d]

and such that its angular velocity does not exceed (−d, d) when it starts in K. If f(u) = |u|,

u ∈ U = [−ε, ε], then f ∈ C(U,R) and 0 = f(0) = inf f . Note that here (Sτf)(ω) represents

the impulse of the torque ω until time τ . Hence, the invariance pressure Pinv(f,K,D) measures

the exponential growth rate of the quantity of total impulse required of the external torques

acting on the system to remain in D as time tends to infinity. Corollary 3.3.6 implies that

Pinv(f,K,D) =
√
g = hinv(K,D). The reason is that within the control set D one may steer

the system from K arbitrarily close to the equilibrium 0 ∈ R2 and keep it there with arbitrarily

small torque.

3.4 Lower Bounds

Consider a control system Σ = (R,M, U,U , ϕ) on a Riemannian manifold (M, g) and

suppose that for each t ≥ 0 and ω ∈ U , the map ϕt,ω : M → M is a diffeomorphism. In

our case, it happens if the following two assumptions are verified:

• For each u ∈ U , the map Fu : M → TM is infinitely differentiable.

• U = {ω ∈ L∞(R,Rm); ω(t) ∈ U a.e.}.

The ideas of this section come from [26] and [27, Section 4.2]. Here we provide a lower

bound for the invariance pressure when both sets of an admissible pair (K,Q) have

finite and positive Riemannian volume vol.

Theorem 3.4.1. Let f ∈ C(U,R) and (K,Q) an admissible pair for Σ such that Q is open or

closed and both K and Q have finite and positive volume. Then

Pinv(f,K,Q) ≥ lim sup
τ→∞

1

τ

 inf
(x,ω)∈K×U
ϕ([0,τ ],x,ω)⊂Q

∫ τ

0

f(ω(s))ds+ log max

1, inf
(x,ω)∈K×U
ϕ([0,τ ],x,ω)⊂Q

| det dxϕτ,ω|


 .

Proof. Initially note that we may assume that for all τ > 0, there exists a finite (τ,K,Q)-

spanning set, because if there is τ0 > 0 such that for all τ ≥ τ0 every (τ,K,Q)-spanning

set is infinity, then Pinv(f,K,Q) =∞ and the result becomes trivial.
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Let τ > 0, S be a finite (τ,K,Q)-spanning set. For each ω ∈ S, define

Kω := {x ∈ K; ϕ([0, τ ], x, ω) ⊂ Q}.

In this case, K = ∪ω∈SKω, because S is a (τ,K,Q)-spanning. If Q is closed, we can

write each Kω as countable intersection of measurable sets:

Kω = K ∩
⋂

t∈[0,τ ]∩Q

ϕ−1
t,ω(Q),

and if Q is open, Kω is relatively open in Q by continuity of ϕω(·, ·). Since ϕτ,ω is a

diffeomorphism, also ϕτ,ω(Kω) is measurable. Then

vol(ϕτ,ω(Kω)) =

∫
ϕτ,ω(Kω)

dvol =

∫
Kω

| det dϕτ,ω|dvol ≥ vol(Kω) inf
(x,ω)∈K×U
ϕ([0,τ ],x,ω)⊂Q

| det dxϕτ,ω|

︸ ︷︷ ︸
α(τ)

.

Put β(τ) := inf
(x,ω)∈K×U
ϕ([0,τ ],x,ω)⊂Q

(Sτf)(ω), then

eβ(τ)vol(K) ≤
∑
ω∈S

e(Sτf)(ω)vol(Kω) ≤ max
ω∈S

vol(Kω)
∑
ω∈S

e(Sτf)(ω)

≤ vol(Q)

max{1, α(τ)}
∑
ω∈S

e(Sτf)(ω),

because ϕτ,ω(Kω) ⊂ Q, implying vol(ϕτ,ω(Kω)) ≤ vol(Q). The previous inequalities

hold for every (τ,K,Q)-spanning set S, therefore

aτ (f,K,Q) ≥ vol(K)

vol(Q)
eβ(τ) max{1, α(τ)},

The result follows from the previous inequality and by the fact that vol(K)
vol(Q)

∈ (0,∞).

Corollary 3.4.2. Under the same assumptions of Theorem 3.4.1, the following estimates hold:

i)

Pinv(f,K,Q)

≥ lim sup
τ→∞

1

τ

 inf
(x,ω)∈K×U
ϕ([0,τ ]x,ω)⊂Q

∫ τ

0

f(ω(s))ds+ inf
(x,ω)∈K×U
ϕ([0,τ ]x,ω)⊂Q

max

{
0,

∫ τ

0

divFω(s)(ϕ(s, x, ω))ds

} .
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ii)

Pinv(f,K,Q) ≥ lim inf
τ→∞

 inf
(x,ω)∈K×U
ϕ([0,τ ]x,ω)⊂Q

1

τ

∫ τ

0

f(ω(s))ds


+ lim inf

τ→∞

 inf
(x,ω)∈K×U
ϕ([0,τ ]x,ω)⊂Q

1

τ
max

{
0,

∫ τ

0

divFω(s)(ϕ(s, x, ω))ds

} .

iii)

Pinv(f,K,Q) ≥ max

{
0, inf

(x,u)∈Q×U
divFu(x)

}
+ inf f.

Proof. i) The result follows immediately from the Liouville’s formula

log | det dxϕτ,ω| =
∫ τ

0

divFω(s)(ϕ(s, x, ω))ds.

ii) It is sufficient to note that, in general, given functions g1, g2 : R+ → R, then

lim sup
τ→∞

g1(τ) ≥ lim inf
τ→∞

g1(τ) and lim inf
τ→∞

(g1(τ)+g2(τ)) ≥ lim inf
τ→∞

g1(τ)+lim inf
τ→∞

g2(τ).

iii) We just have to observe that

τ inf
(x,u)∈Q×U

divFu(x) ≤
∫ τ

0

divFω(s)(ϕ(s, x, ω))ds and τ inf f ≤
∫ τ

0

f(ω(s))ds.



CHAPTER 4

INVARIANCE PRESSURE FOR DISCRETE-TIME

CONTROL SYSTEMS

In 2004, Nair et al. defined the topological feedback entropy via invariant covers of

a set Q (with some invariant conditions imposed) and they proved that this quan-

tity characterizes the smallest average data rate above which it is possible to render

the set Q invariant by a causal coding and control law (see [32, Section III]). Nine

years later, Colonius, Kawan and Nair modeled rightly the original definition of in-

variance entropy presented in [9] via spanning sets for discrete-time control systems

and they showed in [10] that these control entropies are essentially equivalent when Q

is strongly invariant.

This equivalence of the definitions via spanning sets and (invariant) covers is also

verified for topological entropy for dynamical systems on compact metric spaces (see,

for instance, [39, Theorem 7.8]). Although this fact is valid for topological pressure

only when one consider covers with diameter arbitrarily small.

This chapter follows [6] and proposes to generalize the definitions and some results

presented in [32] and [10] for the invariance pressure case and, in contrast to what oc-

curs with topological pressure, we can show that for all f ∈ C(U,R), both definitions

via spanning sets (inner invariance pressure) and invariant covers (topological feed-

back pressure) coincide for a strongly invariant set Q. In the last section we propose a

generalization of the concept of transmission data rate of a channel, presented in [32],
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and we get that the invariance pressure is characterized by the smallest weighted aver-

age data rate above which it is possible to render the set Q invariant by a causal coding

and control law.

4.1 Inner Invariance Pressure

In order to construct the inner invariance pressure for discrete-time control systems let,

for f ∈ C(U,R),

(Snf)(ω) :=
n−1∑
i=0

f(ui), ω = (ui)i∈N0 ∈ U ,

and

an(f,Q) := inf

{∑
ω∈S

e(Snf)(ω); S is a (n,Q, intQ)-spanning

}
.

Definition 4.1.1. For a discrete-time control system of the form (1.3-5), a strongly invariant

compact set Q ⊂ X and f ∈ C(U,R) the inner invariance pressure of Q is defined by the

limit

Pinv,int(f,Q) = lim
n→∞

1

n
log an(f,Q). (4.1-1)

Note that if f = 0 is the null function in C(U,R), then
∑

ω∈S e
(Sn0)(ω) =

∑
ω∈S 1 =

#S, hence

an(0, Q) = inf

{∑
ω∈S

e(Sn0)(ω); S is a (n,Q, intQ)-spanning

}
= inf {#S; S is a (n,Q, intQ)-spanning}

= rinv,int(n,Q). (4.1-2)

Taking the logarithm, dividing by n and letting n tend to∞ one finds that Pinv,int(0, Q) =

hinv,int(Q). Hence the inner invariance pressure generalizes the inner invariance en-

tropy.

Remark 4.1.2. The same result of Proposition 2.1.4 is verified for an(f,Q), that is,

an(f,Q) = inf

{∑
ω∈S

e(Snf)(ω); S is a finite (n,Q, intQ)-spanning

}
.

The proof is analogous to that made in Proposition 2.1.4 and can be found in [6, Proposition 5].
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Based on this result, in the following we will only consider finite spanning sets. We

still have to show that the limit in (4.1-1) actually exists.

Proposition 4.1.3. For f ∈ C(U,R), the following limit exists and satisfies

lim
n→∞

1

n
log an(f,Q) = inf

n≥1

1

n
log an(f,Q).

Proof. This follows by a standard lemma in this context (cf., Lemma 1.4.9), if we can

show that the sequence log an(f,Q), n ∈ N, is subadditive. Let S1 be a (n,Q, intQ)-

spanning set and S2 a (k,Q, intQ)-spanning set. Then define control sequences of

length n+ k by

ω := (u0, . . . , un−1, v0, . . . , vk−1) ∈ Un+k.

for each ω1 = (u0, . . . , un−1) ∈ S1 and ω2 = (v0, . . . , vk−1) ∈ S2. We claim that the set S

of these control sequences is a (n + k,Q, intQ)-spanning. In fact, for x ∈ Q there exist

ω1 ∈ S1 such that

ϕ(j, x, ω) = ϕ(j, x, ω1) ∈ intQ, j = 1, . . . , n.

Since ϕ(n, x, ω1) ∈ intQ ⊂ Q and S2 is strongly (k,Q, intQ)-spanning, there is a ω2 ∈ S2

such that

ϕ(n+ j, x, ω) = ϕ(j, ϕ(n, x, ω1), ω2) ∈ intQ, j = 1, . . . , k.

This shows the claim. Furthermore, for all S1 and S2

∑
ω∈S

e(Sn+kf)(ω) =
∑
ω∈S

e(Snf)(ω1)e(Skf)(ω2) ≤
∑
ω1∈S1

e(Snf)(ω1)
∑
ω2∈S2

e(Skf)(ω2).

Hence an+k(f,Q) ≤ an(f,Q)ak(f,Q) and the subadditivity property follows proving

the assertion.

Example 4.1.4. Consider a scalar linear control system of the form

xk+1 = axk+1 + uk, uk ∈ U := [−1, 1],

with a > 1 and let Q :=
[
− 1
a−1

+ ε, 1
a−1
− ε
]
, where ε > 0 is small. Let f ∈ C(U,R) be

given by f(u) = |u| , u ∈ [−1, 1]. We claim that Pinv,int(f,Q) = log a = hinv,int(Q), where the

equality for the inner invariance entropy of Q has been shown in Colonius, Kawan and Nair

[10, Example 3.2].
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In order to show Pinv,int(f,Q) ≥ log a, consider for n ∈ N a finite (n,Q, intQ)-spanning

set S. For ω ∈ S define

Qω := {x ∈ Q;ϕ(j, x, ω) ∈ intQ for j = 1, . . . , n}.

ThenQ =
⋃
ω∈S

Qω and hence the Lebesgue measure λ satisfies λ(Q) ≤
∑
ω∈S

λ(Qω). Furthermore,

for x ∈ Qω we have

ϕ(n, x, ω) = anx+
n∑
i=0

aiui ∈ Q,

which implies that λ(Q) ≥ anλ(Qω). Thus

λ(Q) ≤
∑
ω∈S

λ(Qω) ≤ #S·max
ω∈S

λ(Qω) ≤ #S · a−nλ(Q)

and hence #S ≥ an−1. Since f(u) ≥ 0, it follows that

an(f,Q) = inf

{∑
ω∈S

e(Snf)(ω); S is a (n,Q, intQ)-spanning set

}
≥ an

and hence

Pinv,int(f,Q) = lim
n→∞

1

n
log an(f,Q) ≥ log a.

In order to prove Pinv,int(f,Q) ≤ log a, we use that the inner invariance entropy is given by

hinv,int(Q) = log a. If a solution with x0 ∈ Q and control values ui ∈ U satisfies for k ≥ 1

ϕ(k, x0, ω) = akx0 +
k−1∑
i=0

aiui ∈ intQ,

then it follows for every δ ∈ (0, 1) that δui ∈ δU = [−δ, δ] ⊂ [−1, 1] = U for all i and

δϕ(k, x0, ω) = akδx0 +
k−1∑
i=0

aiδui ∈ int(δQ) ⊂ int(Q).

Hence the solution keeps the initial point δx0 ∈ δQ with control values δui ∈ δU in int(δQ).

Observe that f(δui) = |δui| ≤ δ.

Take 0 < δ < 1
a−1
− ε. Then for x0 ∈ Q =

[
− 1
a−1

+ ε, 1
a−1
− ε
]

there are n ∈ N and
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ω = (ui) with ui ∈ U = [−1, 1] such that

|ϕ(n, x0, ω)| ≤ δ and ϕ(k, x0, ω) ∈ Q for all k = 1, . . . , n− 1.

This is seen as follows. If x0 ∈
[
0, 1

a−1
− ε
]
, we can make a step to the left of x0 of length l

where l ∈ (0, (a − 1)ε] is arbitrary. In fact, using the control value u0 = −1 ∈ [−1, 1] one

obtains for x1 = ax0 + u0 that

x1 − x0 = ax0 − x0 − 1 ≤ (a− 1)

(
1

a− 1
− ε
)
− 1 = −(a− 1)ε < 0.

Similarly, for u0 = −1 + (a − 1)ε ∈ [−1, 1], one computes x1 = x0 and hence, by continuity,

one can make steps of length l to the left.

Analogously for x0 ∈
[

1
1−a + ε, 0

]
one can make steps to the right.

Going several steps, if necessary, one can reach the interval (−δ, δ) from each point of Q.

By the arguments above we know that we can stay in the interval (−δ, δ). Together we

have shown that there is a time n0 ∈ N such that for every x ∈ Q there is a control ω with

ϕ(n0, x, ω) ∈ (−δ, δ). By continuity, there are finitely many controls ω1, . . . , ωN such that for

every x ∈ Q there is ωi with ϕ(n0, x, ωi) ∈ (−δ, δ).

Now choose a finite (n,Q, intQ)-spanning set S with minimal cardinality #S = rinv,int(n,Q).

This yields the set Sδ := {δω;ω ∈ S} of controls with values in [−δ, δ] which keep every el-

ement in δQ. Concatenations of the controls in Sδ with the controls ω1, . . . , ωN yields an

(n0+n,Q, intQ)-spanning set S ′ with cardinality #S ′ ≤ N ·#S. For k ∈ {n0+1, . . . , n0+n},

the controls in S ′ have values in [−δ, δ], hence f(u) = |u| ≤ δ here.

We compute for ω′ = (ui) ∈ S ′

(Sn0+nf)(ω′) =

n0+n−1∑
i=0

f(ui) =

n0−1∑
i=0

f(ui) +

n0+n−1∑
i=n0

f(ui)

≤ n0 max
u∈[−1,1]

|u|+ n max
u∈[−δ,δ]

|u| = n0 + nδ.

This yields

an+n0(f,Q) ≤
∑
ω′∈S′

e(Sn+n0f)(ω) ≤ #S ′ · en0+nδ ≤ N ·#S · en0+nδ

= N · rinv,int(n,Q) · en0+nδ,
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and hence

Pinv,int(f,Q) = lim sup
n→∞

1

n+ n0

log an+n0(f,Q)

≤ lim sup
n→∞

[
1

n+ n0

logN +
n

n+ n0

1

n
log rinv,int(n,Q) +

n0 + nδ

n+ n0

]
≤ lim

n→∞

1

n
log rinv,int(n,Q) + lim sup

n→∞

n0 + nδ

n+ n0

.

Since n0+nδ
n+n0

≤ 2δ for n large enough it follows that Pinv,int(f,Q) ≤ hinv,int(Q) + 2δ which

implies Pinv,int(f,Q) ≤ hinv,int(Q), since δ > 0 is arbitrary.

The discrete-time case has a particular formulation of Proposition 2.2.7. Let Σ =

(Z, X, U,U , ϕ) and suppose we take N ∈ N steps at once. Then, naturally, the solution

ϕ(N, x, ω) may be in Q while there may exist i ∈ {1, ..., N − 1} with ϕ(i, x, ω) 6∈ Q.

Hence, for a power rule in invariance problems of discrete-time control systems one

has to exclude this a-priori. Therefore, we must assume that Q satisfies the no-return

property for the discrete-time environment.

Starting from control system (1.3-5) define the following control system. Given

N ∈ N, the control range is UN = U × . . . × U and the set of corresponding controls is

denoted by UN . Then a bijective relation between the controls in U and in UN is given

by

i : U → UN : ω = (ωk) 7→ (ωNk ) := (ω(Nk), . . . , ω(Nk +N − 1)).

The solutions will be given by ϕN(0, x, ω) = x and for k ≥ 1

ϕN(k, x, i(ω)) = ϕ(kN, x, ω).

Then, these are the solutions of ΣN = (Z, X, UN ,UN , ϕN) whose difference equation

has the form

xk+1 = F (N)(xk, vk), vk ∈ UN , (4.1-3)

and the solutions can be written as

ϕN(k, x, ω) = ϕN,θN(k−1)(ω) ◦ · · · ◦ ϕN,ω(x).

Proposition 4.1.5. In the above setting, let Q a strongly invariant set for Σ which Q satisfies
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the no-return property. Then Q is a strongly invariant set for ΣN and for every f ∈ C(U,R)

Pinv,int(g,Q; ΣN) = N · Pinv,int(f,Q; Σ),

where g ∈ C(UN ,R) is given by g(u0, . . . , uN−1) :=
∑N−1

i=0 f(ui).

Proof. It is easy to see thatQ is a strongly invariant set for ΣN . Note also that if S ⊂ U is

a (nN,Q, intQ)-spanning set for Σ, then SN := {i(ω); ω ∈ S} is a (n,Q, intQ)-spanning

set for ΣN . Analogously, if SN is a (n,Q, intQ)-spanning set for ΣN , then i−1(SN) is a

(nN,Q, intQ)-spanning set for Σ. Therefore

∑
ω∈SN

e(Sng)(ω) =
∑

ω∈i−1(SN )

e(SnNf)(ω).

Then an(g,Q; ΣN) = anN(f,Q; Σ) and so

Pinv,int(g,Q; ΣN) = lim
n→∞

1

n
log an(g,Q; ΣN) = N lim

n→∞

1

nN
log anN(f,Q; Σ)

= N · Pinv,int(f,Q; Σ).

4.2 Topological Feedback Pressure

Next we introduce a notion of invariance pressure based on feedbacks and show that

it coincides with the invariance pressure defined above.

Open covers in entropy theory of dynamical systems are replaced in case of control

systems by invariant open covers, introduced in [32].

We say that a set of controls of the form

Wn = {ω(αi);αi ∈ AN0 for i ∈ I}

is a generating set of feedback controls (of length nτ ) for the invariant open cover C, if

the sets Bn(αi), i ∈ I , form a subcover of Bn(C) which is minimal in the sense that none

of its elements may be omitted in order to cover Q. (Its number of elements needs not

be minimal among all subcovers.) Hence Q =
⋃
i∈I Bn(αi) and the number of elements
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#I in the index set I is bounded by #Bn.

Define for ω = (ui)i∈N0 ∈ U

(Snτ )(ω) =
nτ−1∑
i=0

f(ui),

and set

qn(f,Q, C) = inf

{∑
ω∈Wn

e(Snτf)(ω);Wn is a generating set for C

}
.

Definition 4.2.1. Consider a discrete-time control system of the form (1.3-5), a strongly in-

variant compact set Q ⊂ X and f ∈ C(U,R). For an invariant open cover C = (A, τ, G),

put

Pfb(f,Q, C) = lim
n→∞

1

nτ
log qn(f,Q, C) (4.2-4)

and the topological feedback pressure is defined as

Pfb(f,Q) = inf{Pfb(f,Q, C); C is an invariant open cover of Q}.

Here are several comments on this definition. If f = 0 is the null function in

C(U,R), then ∑
ω∈Wn

e(Sn0)(ω) =
∑
ω∈Wn

1 = #Wn,

hence

qn(0, Q, C) = inf

{∑
ω∈Wn

e(Snτ0)(ω);Wn is a generating set for C

}

= inf {#B; B is a subcover of Bn} = N(Bn;Q),

where N(Bn;Q) denotes the minimal number of elements in a subcover of Bn. Hence

one finds that the topological feedback entropy hfb(C) of C (as defined in [27, p. 70])

satisfies

hfb(C) := lim
n→∞

1

nτ
logN(Bn;Q) = lim sup

n→∞

1

nτ
log qn(0, Q, C) = Pfb(0, C),
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and so the topological feedback entropy of the control system (1.3-5) satisfies

hfb(Q) := inf{hfb(C); C is an invariant open cover of Q}

= inf{Pfb(0, C); C is an invariant open cover of Q} = Pfb(0, Q).

Hence the topological feedback pressure is a generalization of the topological feedback

entropy.

The following lemma provides the remaining proof that the limit in (4.2-4) actually

exists.

Lemma 4.2.2. If f ∈ C(U,R) and C = (A, τ, G) is an invariant open cover of Q, then the

following limit exists and satisfies

lim
n→∞

1

n
log qn(f,Q, C) = inf

n≥1

1

n
log qn(f,Q, C).

Proof. The assertions will follow from Lemma 1.4.9 if the sequence log qn(f,Q, C), n ∈

N, is subadditive. This will be shown by constructing a generating set Wn+k from

generating setsWn andWk with the desired properties.

Let Wn = {ω(αi1), . . . , ω(αiM )} and Wk = {ω(βi1), . . . , ω(βiK )} be generating sets

of feedback controls. Here αi and βj are given by sequences of sets in A in the form

αi = (Aαiσ )σ and βj =
(
Aβiσ
)
σ
. Then define for all i and j sequences in A by

αiβj =
(
Aαi0 , . . . , A

αi
n−1, A

βj
0 , . . . , A

βj
k−1, . . .

)
.

If we denote by Aαiβjσ the σth element of αiβj , then

Aαiβjσ =

 Aαiσ , if 0 ≤ σ ≤ n− 1

A
βj
σ−n, if σ ≥ n.

Claim: The set

{ω(αiβj); i ∈ {i1, . . . , iM}, j ∈ {j1, . . . , jK}} (4.2-5)

contains a generating set of feedback controls.
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First note that by the cocycle property one finds for σ = 0, . . . , k

ϕ(σ+n)τ,ω(αiβj) = ϕστ,(θnτω(αiβj)) ◦ ϕnτ,ω(αiβj) = ϕστ,ω(βj) ◦ ϕnτ,ω(αi),

and hence

ϕ−1
(σ+n)τ,ω(αiβj)

= ϕ−1
nτ,ω(αi)

◦ ϕ−1
στ,ω(βj)

.

Thus for all i and j

Bn+k(αiβj) = Bn(αi) ∩ ϕ−1
nτ,ω(αiβj)

(Bk(βj)). (4.2-6)

In fact,

Bn+k(αiβj) =
n+k−1⋂
σ=0

ϕ−1
στ,ω(αiβj)

(Aαiβjσ )

=
n−1⋂
σ=0

ϕ−1
στ,ω(αiβj)

(Aαiβjσ ) ∩ ϕ−1
nτ,ω(αiβj)

[ k−1⋂
σ=0

ϕ−1
στ,θnτω(αiβj)

(A
αiβj
σ+n)

]

=
n−1⋂
σ=0

ϕ−1
στ,ω(αi)

(Aαiσ ) ∩ ϕ−1
nτ,ω(αiβj)

[ k−1⋂
σ=0

ϕ−1
στ,ω(βj)

(Aβjσ )

]
= Bn(αi) ∩ ϕ−1

nτ,ω(αiβj)
(Bk(βj)).

Clearly the sets Bn+k(αiβj) are elements of Bn+k(C). It follows from (4.2-6) that they

cover Q, since this is valid for the families

{Bn(αi); i ∈ {i1, . . . , iM}} and {Bn(βj); j ∈ {j1, . . . , jK}} .

Hence the collection in (4.2-5) is a subcover of Bn+k(C) and one finds in the family (4.2-

5) an associated generating set of feedback controls which we denote by Wn+k. Thus

the Claim is proved.

In order to show subadditivity of the sequence log qn(f,Q, C), n ∈ N, note that for

all n, k ∈ N

∑
ω∈Wn+k

e(S(n+k)τf)(ω) =
∑

ω∈Wn+k

e(Snτf)(ω)e(Skτf)(θnτω)

≤
∑
ω∈Wn

e(Snτf)(ω)
∑
ω∈Wk

e(Skτf)(ω).
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Since Wn and Wk are arbitrary it follows that qn+k(f,Q, C) ≤ qn(f,Q, C) · qk(f,Q, C).

This implies the required subadditivity concluding the proof.

Next we show that this feedback invariance pressure coincides with the inner in-

variance pressure introduced in Definition 4.1.1 and it generalizes the Theorem 1.4.11.

Theorem 4.2.3. If f ∈ C(U,R) and Q is a strongly invariant compact subset of X , then

Pinv,int(f,Q) = Pfb(f,Q).

Proof. First we prove the inequality Pinv,int(f,Q) ≤ Pfb(f,Q). Let C = (A, τ, G) be an

invariant open cover. Then for n ∈ N, every generating set Wn of controls for C is a

(nτ,Q, intQ)-spanning set and hence

anτ (f,Q) = inf
S

∑
ω∈S

e(Snτf)(ω) ≤
∑
ω∈Wn

e(Snτf)(ω),

where the infimum is taken over all (nτ,Q, intQ)-spanning set S. It follows that anτ (f,Q) ≤

qn(f,Q, C) and therefore

Pinv,int(f,Q) = lim
n→∞

1

nτ
log anτ (f,Q) ≤ lim

n→∞

1

nτ
log qn(f,Q, C) = Pfb(f,Q, C).

Since this holds for every invariant open cover C, we conclude

Pinv,int(f,Q) ≤ inf
C
Pfb(f,Q, C) = Pfb(f,Q),

where the infimum is taken over all invariant open covers C of Q.

To show that Pfb(f,Q) ≤ Pinv,int(f,Q) we construct an invariant open cover for τ ∈

N. Let S be a (τ,Q, intQ)-spanning set. For each ω ∈ S consider

A(ω) := {x ∈ Q; ϕ(j, x, ω) ∈ intQ for j = 1, . . . , τ}.

The set A = {A(ω); ω ∈ S} forms a finite open cover of Q. Now define a map G : A →

U τ by

G(A(ω)) = (ω0, . . . , ωτ−1).

Clearly, C := (A, τ, G) is an invariant open cover of Q.
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Recall that α ∈ AN0 defines a control ω(α) and for n ∈ N the set Bn(α) is given by

Bn(α) := {x ∈ X; ϕ(iτ, x, ω(α)) ∈ Ai for i = 0, 1, . . . , n− 1}.

These sets form on open cover Bn = Bn(C) of Q. Consider a generating set of feedback

controls of the form

Wn = {ω(αi);αi ∈ AN0 for i ∈ I},

hence the sets Bn(αi), i ∈ I , form a subcover of Bn(C) which is minimal. Therefore

∑
ω∈Wn

e(Snτf)(ω) =
∑
ω∈Bn

e(Sτf)(ω)e(Sτf)(θτω) · · · e(Sτf)(θ(n−1)τω)

≤

(∑
ω∈Bn

e(Sτf)(ω)

)(∑
ω∈Bn

e(Sτf)(θτω)

)
· · ·

(∑
ω∈Bn

e(Sτf)(θ(n−1)τω)

)

≤

(∑
ω∈S

e(Sτf)(ω)

)n

.

Since the previous inequality holds for all finite (τ,Q, intQ)-spanning sets S, it follows

that qn(f,Q, C) ≤ [aτ (f,Q)]n for all n ∈ N. Hence

Pfb(f,Q, C) = lim
n→∞

1

nτ
log qn(f,Q, C) ≤ lim

n→∞

1

nτ
log [aτ (f,Q)]n

=
1

τ
log aτ (f,Q).

Using Proposition 4.1.3 we conclude that

Pfb(f,Q) = inf
C
Pfb(f,Q, C) ≤ inf

τ∈N

1

τ
log aτ (f,Q) = Pinv,int(f,Q).

4.3 A Note on Transmission Data Rate

It is well known that the topological feedback entropy characterizes the smallest pos-

sible data rate that permits a specified compact set to be made invariant, by a causal

coding and control law belonging to a general class (cf. [27, Theorem 2.1] and [32, The-
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orem 1]). Our goal in this section is to get a weighted version of this result by extending

the definition of transmission data rate of a channel presented in [32] and relate this to

the topological feedback pressure.

Suppose that a sensor, which is connected to a controller by a noiseless digital chan-

nel, measures the state at discrete sampling times τk, k ≥ 0, say τk = k. At time τk,

one discrete-valued symbol sk from a finite coding alphabet Sk of time-varying size is

transmitted.

Each symbol transmitted by the coder may depend on all past and present states

and past symbols, that is, we have a coder mapping γk : Xk+1 × S0 × · · · × Sk−1 →

Sk, γk(x0, · · · , xk, s0, · · · , sk−1) = sk. Assuming that the digital channel is errorless,

at time τk, the controller has s0, · · · , sk available and generates a control value uk =

δk(s0, · · · , sk), where δk is the controller mapping δk : S0 × · · · × Sk → U We define the

coder-controller as the triple

H := (S, γ, δ) = ({Sk}k∈N0 , {γk}k∈N0 , {δk}k∈N0).

The generalized transmission data rate of the channel with weight f is defined as

the asymptotic weighted average bit rate

R(f,H) := lim inf
k→∞

1

k
log

 ∑
(s0,··· ,sk−1)∈

∏k−1
i=0 Si

e(SHk f)(s0,··· ,sk−1)

 ,

where

(SHk f)(s0, · · · , sk−1) := f(δ0(s0)) + f(δ1(s0, s1)) + · · ·+ f(δk−1(s0, · · · , sk−1))

=
k−1∑
i=0

f(δi(s0, · · · , si)).

Remark 4.3.1. Note that if we do not put any weight on the control values, i.e., if f is the null

function 0, then the generalized transmission data rate R(0,H) coincide with the transmission

data rate R presented in [32, Section III].

Now, let Q ⊂ X be a strongly invariant set. We say that a coder-controller (S, γ, δ)

renders Q (strongly) invariant if for every x0 ∈ Q, the sequence of states (xk)k∈N0 gen-

erated by the coder-controller satisfies xk ∈ intQ for all k ≥ 1.
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System

xk+1 = F (xk, uk)

CoderController

noiseless digital channel

Theorem 4.3.2. For every f ∈ C(U,R) we get

Pfb(f,Q) = inf
H
R(f,H),

where the infimum is taken over all coder-controllers H = (S, γ, δ) that render Q strongly

invariant.

Proof. Given ε > 0, there exists an invariant open cover C = (A, τ, G) such that Pfb(f,Q, C)−

Pfb(f,Q) ≤ ε
2
. Since

Pfb(f,Q, C) = lim
j→∞

1

jτ
log qj(f,Q, C),

there is j := j(ε) ∈ N with

1

jτ
log qj(f,Q, C) ≤ Pfb(f,Q, C) +

ε

4
.

Fixing such j, letWj = {ω(α1), · · · , ω(αm)} be a generating set of feedback controls (of

length jτ ) for C such that

1

jτ
log

∑
ω∈Wj

e(Sjτf)(ω) ≤ 1

jτ
log qj(f,Q, C) +

ε

4
,

(here we used that log is continuous and increasing), hence we obtain an open subcover

{B(α1), · · · , B(αm)} of Bj . We construct a periodic coding law using these possibly

overlapping sets via the rule

sk =

 min{σ; xk ∈ B(ασ)}, if k ∈ (jτ)N0

1, otherwise
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In order to build the controller, note that once received the symbol sl(jτ) = σ which

index an open set B(ασ), hence there are Aσ0 , . . . , Aσj−1 ∈ A such that

B(ασ) = {x ∈ X; ϕ(rτ, x, ω(ασ)) ∈ Aσr , for r = 0, 1, · · · , j − 1}.

Given σ ∈ {1, · · · ,m}, the controller will generate inputs via the periodic rule

ω(α′σ) = (u0, . . . , uτ−1︸ ︷︷ ︸
G(Aσ0 )

, uτ , . . . , u2τ−1︸ ︷︷ ︸
G(Aσ1 )

, . . . , u(j−1)τ , . . . , ujτ−1︸ ︷︷ ︸
G(Aσj−1)

, . . .

. . . , uljτ , . . . , u(lj+1)τ−1︸ ︷︷ ︸
G(Aσ0 )

, u(lj+1)τ , . . . , u(lj+2)τ−1︸ ︷︷ ︸
G(Aσ1 )

, . . . , u((l+1)j−1)τ , . . . , u(l+1)jτ−1︸ ︷︷ ︸
G(Aσj−1)

, . . .)

where α′σ is the j-periodic sequence in A given by

α′σ := (Aσ0 , · · · , Aσj−1, A
σ
0 , · · · , Aσj−1, · · · ).

It is important to note that for i = 0, . . . , jτ − 1, we have ω(ασ)i = ω(α′σ)i =

δi(s0, 1, . . . , 1). Hence

(Snτf)(ω(ασ)) = (Snτf)(ω(α′σ)) = (SHnτf)(s0, 1, . . . , 1).

By definition of invariant open covers this yields x(lj+q)τ ∈ intQ and hence, the

constructed coder-controller renders Q invariant.
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Denoting by W̃j the set {ω(α′1), . . . , ω(α′m)}, we obtain

R(f,H) = lim inf
k→∞

1

k
log

 ∑
(s0,··· ,sk−1)∈

∏k−1
i=0 Si

e(SHk f)(s0,··· ,sk−1)


= lim inf

k→∞

1

k
log

 ∑
(s0,1,··· ,1)∈

∏jτ−1
i=0 Si

ebk/(jτ)c(SHjτf)(s0,1,··· ,1)


= lim inf

k→∞

1

k
log

eb kjτ c ∑
ω∈W̃j

e(Sjτf)(ω)


= lim inf

k→∞

1

k

⌊
k

jτ

⌋
log

∑
ω∈W̃j

e(Sjτf)(ω)


=

1

jτ
log

∑
ω∈W̃j

e(Sjτf)(ω) =
1

jτ
log

∑
ω∈Wj

e(Sjτf)(ω)

≤ 1

jτ
log qj(f,Q, C) +

ε

4
≤ Pfb(f,Q, C) +

ε

2
.

Therefore

R(f,H)− Pfb(f,Q) = (R(f,H)− Pfb(f,Q, C)) + (Pfb(f,Q, C)− Pfb(f,Q))

≤ ε

2
+
ε

2
= ε

For the reverse inequality, let H := (S, γ, δ) be a coder-controller that renders Q

invariant. Given ε > 0, there exists l ∈ N such that

1

l
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(SHl f)(s0,··· ,sl−1)

 < R(f,H) + ε. (4.3-7)

Then, we can build a periodic coder-controllerHP := (SP , γP , δP ) with period l as

SPk := Sk mod l

sk = γPk ({xi}ki=0, {si}k−1
i=0 ) := γk mod l({xi}ki=lbk/lc, {si}k−1

i=lbk/lc)

uk = δPk ({si}ki=0) := δk mod l({si}ki=lbk/lc)

By construction, this new coder-controller also renders Q invariant. Writing each k ∈

N as k = pkl + qk with pk ∈ N0 and qk ∈ {0, · · · , l − 1}, the associated generalized
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transmission data rate R(f,HP ) can be computed as

R(f,HP )

= lim inf
k→∞

1

k
log

 ∑
(s0,··· ,sk−1)∈

∏k−1
i=0 S

P
i

e(SHk f)(s0,··· ,sk−1)


= lim inf

k→∞

1

k
log

 ∑
(s0,··· ,sk−1)∈

∏k−1
i=0 Si mod l

e(SHk f)(s0,··· ,sk−1)


≤ lim inf

k→∞

1

pkl + qk
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

epk(SHl f)(s0,··· ,sl−1)+qk sup f

 (4.3-8)

= lim inf
k→∞

qk
pkl + qk

sup f + lim inf
k→∞

pk
pkl + qk

log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(SHl f)(s0,··· ,sl−1)


=

1

l
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(SHl f)(s0,··· ,sl−1)


Analogously we can show that

R(f,HP ) ≥ 1

l
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(SHl f)(s0,··· ,sl−1)

 ,

replacing the sup f by inf f in the inequality 4.3-8, hence we obtain the equality

R(f,HP ) =
1

l
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(Slf)(s0,··· ,sl−1)

 .

With 4.3-7 this implies R(f,HP ) < R(f,H) + ε. Each sequence of symbols in S0× · · · ×

Sl−1 defines a coding region in X which is defined as the set of all initial states x which

force the coder to generate this sequence. The total number n of nonempty and disjoint

coding regions is less than or equal to
∏l−1

i=0 #Si. Let C1, · · · , Cn denote these coding

regions and note that Q ⊂ ∪ni=1Ci. From HP we can now construct an invariant open

cover C = (A, τ, G) of Q as follows: The time τ is set to l. For every x0 in one of the

coding regions Ci = Ci(c0, · · · , cl−1) there exists an open neighborhoodN(x0) such that

for every y0 ∈ N(x0) the same sequence (c0, · · · , cl−1) of symbols gives y1, · · · , yl ∈ intQ,

due to continuity of the transition map with respect to the state variable. Thus, we
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can “blow up” the sets Ci by setting Ai = ∪x0∈CiN(x0). This defines the open cover

A = {A1, · · · , An} of Q. Finally, the mapping sequence G is defined by G(Ai) := the

symbol sequence (c0, · · · , cl−1) corresponding to the coding region Ci. By construction,

it is clear that (A, τ, G) is an invariant open cover. The pressure of C = (A, τ, G) can be

estimated by

Pfb(f,Q, C) = lim
j→∞

1

jτ
log qj(f,Q, C)

≤ lim
j→∞

1

jτ
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(SHl f)(s0,··· ,sl−1)

j

=
1

l
log

 ∑
(s0,··· ,sl−1)∈

∏l−1
i=0 Si

e(SHl f)(s0,··· ,sl−1)

 .

Therefore

Pfb(f,Q) ≤ Pfb(f,Q, C) ≤ R(f,HP ) < R(f,H) + ε.

Taking ε↘ 0 we get Pfb(f,Q) ≤ R(f,H).
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