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RESUMO: Dois experimentos foram conduzidos para avaliar os efeitos da suplementação 

de níveis crescentes de β-mananase no desempenho, saúde intestinal, microbioma e 

coeficientes de digestibilidade aparente (CDA) em juvenis de tilápia do Nilo 

(Oreochromis niloticus) alimentados com dietas à base de ingredientes de origem vegetal. 

O primeiro experimento teve como objetivo avaliar os efeitos dos níveis crescentes de β-

mananase no desempenho, composição corporal, viscosidade e pH da digesta, atividade 

das enzimas digestivas, parâmetros sanguíneos, teor de ácidos graxos de cadeia curta da 

digesta, morfologia intestinal e microbioma. Os peixes (n = 504; peso corporal 7,0 ± 0,43 

g) foram distribuídos aleatoriamente em 24 aquários de 70 L cada, em sistema de 

aquicultura de recirculação, em delineamento inteiramente casualizado com seis 

tratamentos e quatro repetições de 21 peixes por aquário. Os peixes foram alimentados 

com dietas com níveis crescentes de β-mananase de (0 (controle); 1600; 3200; 4800; 

6400; 8000 TMU kg−1) e alimentados manualmente 12 vezes ao dia, durante oito 

semanas. Peixes alimentados com dieta com 4800 TMU kg−1 de β-mananase 

apresentaram menor viscosidade da digesta (−25,8%) e maior atividade das enzimas 

amilase (+61,2%), protease (+25,4%) e lipase (+47,7%), e aumentou o ganho de peso 

(+5,4%) e a taxa de eficiência alimentar (+12,1%) do que os peixes alimentados com a 

dieta controle. A β-mananase na dieta de 4800 TMU kg−1 aumentou o teor de ácido 

butírico (+63,3%) e baixou o pH intestinal (−8,2%), enquanto aumentou a altura total das 

vilosidades (+40,4%) dos peixes em relação aos peixes alimentados com a dieta controle. 
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Peixes alimentados com dieta com 4800 TMU kg−1 de β-mananase apresentaram maior 

abundância de bactérias benéficas, Proteobacteria, Actinobacteria e Firmicutes. Além 

disso, reduziu significativamente a população de bactérias potencialmente nocivas 

(Escherichia). Concluiu-se que a β-mananase na dieta de 4800 TMU kg−1 reduz a 

viscosidade da digesta, aumenta a atividade das enzimas digestivas e, consequentemente, 

melhora a digestibilidade e o desempenho, bem como aumenta a produção de ácidos 

graxos de cadeia curta, a morfologia intestinal e modula positivamente a microbiota 

intestina. O segundo estudo foi realizado com o objetivo de determinar a viscosidade e o 

pH das fezes e, posteriormente, os efeitos no CDA de energia e nutrientes, incluindo 

aminoácidos em juvenis de tilápia do Nilo alimentados com dietas com níveis crescentes 

de β-mananase na dieta. Os peixes (n = 504; peso corporal 7,0 ± 0,43 g) foram distribuídos 

aleatoriamente em aquários de 24 com 70 L em sistema de recirculação, em delineamento 

inteiramente casualizado com seis tratamentos e quatro repetições de 21 peixes por 

aquário. Os peixes foram alimentados com dietas com níveis crescentes de β-mananase 

(0; 1600; 3200; 4800; 6400; 8000 TMU kg−1) e alimentados manualmente 12 vezes ao 

dia durante oito semanas. O óxido de cromo foi usado como um marcador indigerível. 

Peixes alimentados com a dieta com β-mananase a 4800 TMU kg−1 apresentaram redução 

da viscosidade fecal (−77,1%) e pH (−11,1%), além da otimização da energia bruta CDA 

(+7,2%), proteína bruta (+3,5%), lípideo bruto (+1,2%), cinzas (+19,7%), aminoácido 

essencial (+4,0%) e aminoácido não essencial (+3,4%). Além disso, aumentou a energia 

digestível (+7,23%) e a proteína digestível (+3,54%). A análise dos componentes 

principais mostra que a viscosidade e o pH das fezes têm uma correlação forte e negativa 

no CDA de matéria seca, energia bruta, lipídeo bruto, proteína bruta, cinzas, EAA e 

NEAA. Concluiu-se que a β-mananase no nível de 4800 TMU kg−1 na dieta melhora a 

digestibilidade da energia e nutrientes, incluindo aminoácidos, reduzindo a viscosidade 

da digesta. No geral, nossos resultados sugerem que a dieta de 4800 TMU kg−1 de β-

mananase melhora a digestibilidade, o desempenho de crescimento e a saúde intestinal de 

juvenis de tilápia do Nilo. O uso de β-mananase pode contribuir para a aplicação do 

conceito de nutrição de precisão mais eficiente, sustentável e econômica. 

 

Palavras-chave: carboidrases, digestibilidade de aminoácidos, saúde intestinal, 

microbiota, Oreochromis niloticus, polissacarídeos não amiláceos, viscosidade da 

digesta. 
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ABSTRACT: Two experiments were carried out to evaluate the effects of graded β-

mannanase supplementation on growth performance, gut health, microbiome, and 

apparent digestibility coefficients (ADC) in juvenile Nile tilapia (Oreochromis niloticus) 

fed plant-based diets. The first experiment aimed to evaluate the effects of graded β-

mannanase levels on growth performance, whole-body composition, digesta viscosity, 

and pH, the activity of digestive enzymes, blood parameters, digesta short-chain fatty acid 

content, and gut morphology and microbiome. Fish (n = 504; body weight 7.0 ± 0.43 g) 

were randomly distributed in 24 aquaria of 70 L each, in a recirculation aquaculture 

system, in a completely randomized design with six treatments and four replicates of 21 

fish per aquarium. Fish were fed diets with graded β-mannanase levels of (0, 1600; 3200; 

4800; 6400; 8000 TMU kg−1) and hand-fed 12 times a day for eight weeks. Fish fed diet 

with a 4800 TMU kg−1 β-mannanase showed lower digesta viscosity (−25.8%), and 

higher activity of amylase (+61.2%), protease (+25.4%) and lipase (+47.7%) enzymes, 

and increased weight gain (+5.4%) and feed efficiency ratio (+12.1%) than fish fed fed 

diet control. β-mannanase at 4800 TMU kg−1 diet increased butyric acid content (+63.3%) 

and lowered gut pH (−8.2%), while increased total villus height (+40.4%) of fish relative 

to that fed diet control. Fish fed diet with 4800 TMU kg−1 β-mannanase showed higher 

abundance of beneficial bacteria, Proteobacteria, Actinobacteria, and Firmicutes. In 

addition, it significantly reduced the population of potential harmful bacteria 

(Escherichia). It was concluded that β-mannanase at 4800 TMU kg−1 diet reduces 
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viscosity, and activity of digestive enzymes and consequently improves growth 

digestibility and growth performance, as well increases production of short-chain fatty 

acids, intestinal morphology and positively modulates the intestinal microbiota 

population. The second study was carried out with the objective of determining the 

digesta viscosity and pH and subsequently effects on ADC of energy and nutrientes, 

including amino acids in juvenile Nile tilapia fed diets with graded levels of β-mannanase 

in the diet. Fish (n = 504; body weight 7.0 ± 0.43 g) were randomly distributed in 24-70 

L aquaria in water recirculation system, in a completely randomized design with six 

treatments and four replications of 21 fish per aquarium. Fish were fed diets with 

increasing levels of β-mannanase (0; 1600; 3200; 4800; 6400; 8000 TMU kg−1) and hand-

fed 12 times a day for eight weeks. Chromium oxide was used as an indigestible marker. 

Fish fed a diet with β-mannanase at 4800 TMU kg−1 showed reduced fecal viscosity 

(−77.1%) and pH (−11.1%), while optimized gross energy ADC (+7.2%), crude protein 

(+3.5%), crude lipid (+1.2%), ash (+19.7%), essential amino acid (+4.0%) and non-

essential amino acid (+3.4%). In addition, increased digestible energy (+7.2%) and 

digestible protein (+ 3.5%). The PCA analysis shows that viscosity and pH of feces have 

a strong and negative correlation within ADC of dry matter, gross energy, crude lipid, 

crude protein, ash, and EAA and NEAA. It was concluded that β-mannanase at the level 

of 4800 TMU kg−1 in the diet improves digestibility of energy, and nutrients, including 

amino acids, by reducing digesta viscosity. Overall, these suggested that β-mannanase 

4800 TMU kg−1 diet improves digestibility, growth performance and gut health of 

juvenile Nile tilapia. The use of β-mannanase can lead to contributing to the application 

of the concept of precision nutrition for more efficient, sustainable, and economical tilapia 

farming. 

 

Keywords: carbohydrases, amino acid digestibility, gut health, microbiota, Oreochromis 

niloticus, non-starch polysaccharides, digesta viscosity.
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I –INTRODUCTION 

According to the United Nations Food and Agriculture Organization, the world 

population is projected to reach 9.7 billion in 2050, representing a 25% increase from 

2020 (FAO, 2022). This projected population growth highlights the need for both 

increased productivity and sustainable practices to meet future food demand (Valenti et 

al., 2018). In this regard, Nile tilapia (Oreochromis niloticus) ranks second in the world's 

most cultured freshwater fish species, with Brazil being the fourth largest producer (FAO, 

2022). One of the significant challenges for all research in this field is that the 

intensification of tilapia farming raises a critical issue: more meaningful use of plant 

ingredients, focusing on the use of ingredients that do not compete with human food 

(Souza et al., 2021; Valenti et al., 2018). This approach has several limitations, as plant-

derived ingredients possess a wide range of anti-nutritional factors, including phytin, 

protease inhibitors, and non-starch polysaccharides (NSPs) (Jiang et al., 2021). Notably, 

soybean meal, one of the most commonly used vegetable ingredients in aquafeeds, 

contains substantial amounts of NSPs (Faustino et al., 2021; Khalifa et al., 2018). It is 

well known that NSPs such as β-mannans cause several adverse effects on nutrient 

utilization, mainly by increasing digesta viscosity. Thus, tools are needed to minimize 

such adverse effects (Castillo and Gatlin, 2015; Chen et al., 2016; Sinha et al., 2011). 

Exogenous enzymes are promising to improve the sustainability of industrial-

scale tilapia culture by reducing the impact of non-retained nutrients, besides the 

antinutritional factors present in aquafeeds (Nguyen et al., 2020; Staessen et al., 2020). 

Particularly, β-mannanase may be helpful to elaborate environmentally sustainable diets 

for fish farming following sustainability principles (Castillo and Gatlin, 2015). Therefore, 

this study involved evaluations of viscosity and pH of digesta, growth performance, 

digestibility, digestive enzymes levels, short-chain fatty acids (SCFA) production, gut 

morphometry, and microbiome modulation by supplementing graded levels effects of β-

mannanase on-top of vegetable-based diet fed to Nile tilapia.  

1. LITERATURE REVIEW 

1.1. Tilapia production 

Tilapia is the second most widely farmed fish species globally, thus, it is a 

subject of particular importance in the production chain (FAO, 2022). According to the 

Food and Agriculture Organization of the United Nations (FAO, 2022), global tilapia 
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production increased by 2% in 2021, reaching approximately 6.25 million tons. 

Additionally, Indonesia produced 1.4 million tons in 2022, followed by Egypt, which 

for the first time, surpassed 1 million tons. Brazil, in fourth place, produced 534,000 

tons in 2021 (FAO, 2022). 

Brazilian fish farming increased by 5.93% in 2020 compared to 2019, with 

tilapia leading such growth (FAO, 2022). There are approximately 70 species of tilapia, 

but only 10 of them are cultivated around the world (FAO, 2022). Noteworthy, Nile 

tilapia, Mozambique tilapia (O. mossambicus), Blue tilapia (O. aureus), Mango tilapia 

(Sarotherodon galilaeus galilaeus), Blackchin tilapia (S. melanotheron), Longfin tilapia 

(O. macrochir macrochir), Redbelly tilapia (Tilapia zilli), Redbreast tilapia (Tilapia 

rendalli), Sabaki tilapia (O. spirulus spirulus) and Three spotted tilapia (O. andersonii) 

are among top ten most cultured tilapia fish species (Zimmermann, Fitzsimmons, 2004). 

The first fish specimens were brought to Brazil in 1971, and the rapid expansion of 

aquaculture, was the catalyst for the growth of the tilapia industry around the world 

(Valenti et al., 2021).  

Nile tilapia is the second most farmed freshwater fish species due to its 

adaptability to a wide range of culture systems and environments, ranging from 

extensive low-input pond culture to intensive recirculating systems (Carneiro et al., 

2022). Alternative feed ingredients at reasonable prices have been proposed to maintain 

stable costs of fish farming and promote sustainable tilapia aquaculture (Doan et al., 

2020; El-Sayed, 2020). Nile tilapia is a fish species that possess omnivorous feeding 

habit, accepts artificial food from the larval stage, exhibits rapid growth, and lean meat 

(Schader et al., 2015). This fish species can partially digest soluble carbohydrates and 

convert them into energy that benefits fish´s growth performance (NRC, 2011; Van 

Doan et al., 2019). However, further studies are needed to evaluate the potential of 

exogenous carbohydrases in Nile tilapia diets to promote more economically and 

environmentally sustainable fish farming. 

1.2.Non-starch polysaccharides in fish nutrition 

NSPs encompass a wide variety of polysaccharide molecules, excluding α-

glucans (starch) (Thitipraphunkul et al., 2003). They are primarily comprise of linked 

monomers of hexoses and pentoses such as galactose, glucose, arabinose, xylose, and 

mannose (van Barneveld, 1999). Historically, the classification of NSPs was based on 
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the methodology used to extract and isolate polysaccharides (Choct, 1997). In 1973, a 

more precise classification of NSPs into three main groups was proposed: cellulose, 

non-cellulosic polymers, and polysaccharides. Arabinoxylans, mixed-linked β-glucans, 

mannans, and xyloglucan fall into the category of non-cellulosic polymers (Bailey and 

Hunt, 1973), as shown in Table 1. 

Table 1. Classification of non-starch polysaccharides. 

Category Monomeric residue Linkage Sources 

Cellulose Glucose β-(1→4) Most cereals 

and legumes 

Non-cellulosic polymers 

Arabinoxylans Arabinose and Xylose β-(1→4)-linked 

xylose units 

Wheat, rye, 

barley, oat, 

rice, 

sorghum 

Mixed-linked β-

glucans 

Glucose β-(1→3) and β-

(1→4) 

Oat and 

barley 

Mannans Mannose β-(1→4) Coffee seed 

Galactomannans Galactose and 

mannans 

β-(1→4)-linking 

mannan chains with 

α-(1→6)-linked 

galactosyl side 

groups 

Locust bean 

gum ad guar 

gum 

Glucomannans Glucose and mannans β-(1→4)-linked 

mannan chain with 

interspersed glucose 

residues in the main 

chain 

Sugar-beet 

pulp, lilies, 

irises 

Adapted: (Sinha et al., 2011). 

 

NSPs are an integrated part of the cell wall of plant ingredients and in a purified 

soluble form (Liu et al., 2022). In general, NSPs fraction such as β-glucans, β-xylans, and 

β-mannans remains undigested by fish (Castillo and Gatlin, 2015). The adverse effect is 

associated with various physiological and morphological factors affecting digesta 

viscosity, digestibility, growth performance, digestive enzymes activity, blood 

parameters, SCFA production, gut morphology and intestinal microbiota (Table 2). 
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Table 2. Factors responsible for anti-nutritive effects of non-starch polysaccharides. 

Factors Effects References 

Changes in 

digesta 

viscosity 

• Reduced mixing of digestive 

enzymes and substrates 

• Hindered effective interaction 

of digestive enzyme at the intestinal 

mucosal surface 

• Increased residence time of 

the digesta 

• Impaired nutrient digestion 

and absorption 

• Reduced animal performance 

(Amirkolaie et al., 

2005; Choct et al., 

1996; Hossain et al., 

2003; Ikegami et al., 

1990; Leenhouwers et 

al., 2007b, 2007a) 

Alteration in the 

gastric 

emptying and 

rate of passage 

• Reduced rate of gastric 

emptying  

• Delayed intestinal absorption 

of glucose. 

• Reduced plasma cholesterol 

and glucose levels 

(Angkanaporn et al., 

1994; Bach Knudsen, 

2001; Choct et al., 

1996; Hossain et al., 

2003; Leenhouwers et 

al., 2007b, 2007a; 

Potkins et al., 1991; 

Rainbird and Low, 

1986; Refstie et al., 

1999) 

 

Alteration in the 

gut morphology 
• Decreased size and length of 

digestive organs. 

• Reduced concentrations of 

DNA in jejunum, ileum, and liver, 

indicating programmed cell death  

• Reduced villi length.  

• Increased depth of intestinal 

crypts in jejunum and ileum 

(Iji et al., 2001; Jin et 

al., 1994; Leenhouwers 

et al., 2006; Nabuurs, 

1998) 

Alteration in the 

native gut 

microflora 

• Enhanced short-chain fatty 

acids, such as acetic acid, propionic 

and butyric acids, production 

• Lower pH of intestinal tract; 

in long term may disturb the normal 

microbiota prevailing in gut 

• Decreased oxygen tension, 

favoring development of anaerobic 

microbiota 

(Amirkolaie et al., 

2006; Leenhouwers et 

al., 2007a, 2007b) 

Adapted: (Sinha et al., 2011). 

Of note, NSPs are considered to have low nutritional value for fish because of 

their low digestibility and anti-nutritional characteristics (Kabir et al., 2020). Previous 

studies have shown that the type of NSPs can affect fish performance differently (Jiang 

et al., 2021; Wang et al., 2022). Although previous researches have made much effort, 
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the underlying mechanisms of NSPs on nutrient digestibility, including amino acids, 

still not fully understood. 

1.3. β-mannans 

β-mannans are long-chain NSPs mainly composed of mannose residues found 

in the most diverse sources, such as vegetables and microorganisms, that remain 

unchanged after heat treatments, such as drying or roasting grains (Tester and Al-

Ghazzewi, 2013). In plants, mannans and heteromannans are essential components of 

the hemicellulose family and are classified into four subfamilies according to their 

monosaccharide composition: pure mannans (containing only mannose); 

glucomannans; galactomannans and galactoglucomannans (Singh et al., 2018), as 

shown in Figure 1. 

 

 

Figure 1. General structure of the main classes of β-mannan (La Rosa et al., 2019). 

Galactomannans are composed of mannan chains linked to β-(1,4) with α-(1,6) 

galactosyl side groups (McCleary, 1986) (Figure 2). Galactomannans are reserve 

polysaccharides in the endosperm of legume seeds that possess the characteristic of water 

solubility and the ability to absorb water, thus providing water retention in the grains 
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(Reid, 1985). The mannose-galactose ratio, which can range from 1 to 5, may affect 

galactomannans' solubility and viscosity properties (Daas et al., 2000). 

 

 

Figure 2. Primary structure of galactomannans (Ebringerová, 2005; Sinha et al., 2011). 

 

Glucomannans are in smaller amounts in cereal grains (Fincher and Stone, 

1986) and are polysaccharides found in seeds, mainly of annual cycle plants (Meier and 

Reid, 1982). Additionally, glucomannans are found in many bulbs, roots, and tubers of 

many other plants. A previous study has evidenced that galactomannans are soluble in 

water and are composed of a mannan chain linked to β-(1,4) with glucose residues 

interspersed in the main chain (Sinha et al., 2011) (Figure 3). 

 

 

Figure 3. Primary structure of glucomannans (Ebringerová, 2005; Sinha et al., 2011). 
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The content of soluble β-mannans in different ingredients varies by more than 

5% (Faustino et al., 2021). Of note, the β-mannans content is relatively high (in soybean 

and sunflower meal (~0.6%) and up to 7% in palm kernel meal, as shown in Figure 4.  

 

Figure 4. Sources of mannans in vegetable ingredients and microorganisms (Faustino 

et al., 2021; Olaniyi and Omotere, 2013; Singh et al., 2018). 

 

Previous studies in broilers, pigs, and other monogastric animals have indicated 

that β-mannan can promote increased digesta viscosity, reduce nutrient digestibility, and 

negatively impact gut microbiota, SCFAs production, and gut health (Browne et al., 

2019; Rainbird et al., 1986). These findings suggest that exogenous β-mannan may not 

be beneficial for improving digestibility and growth performance in fish.  

1.4.Digesta viscosity  

Digesta viscosity is influenced by the chemical structure and association of NSPs 

with cell wall components (Figure 5). The physical effect of high viscosity has deleterious 

effects on nutrient digestion and absorption (Sternemalm et al., 2008).  

 



8 
 

 

 

Figure 5. Representation of viscosity dynamics in different liquids (Prasad and Srikant, 

2013). 

Previous reports confirmed that NSPs from cereals could increase digesta 

viscosity impair digestibility in Nile tilapia and African catfish (Clarias gariepinus) 

(Leenhouwers et al., 2007b, 2007a). Similarly, early work evidenced that common carp 

(Cyprinus carpio) fed galactomannan-rich diets showed increased gut digesta viscosity, 

compromising digestion and absorption of nutrients (Hossain et al., 2003). 

1.5. Effects of β-mannans on nutrient utilization 

1.5.1. Digestibility of nutrients 

β-mannans increase digesta viscosity and reduce nutrient digestibility, and the 

deleterious effects may vary according to fish species, size, and diet composition 

(Dawood and Shi, 2022; Sinha et al., 2011). Increasing the digesta viscosity of the liquid 

phase acts as a barrier to the availability of nutrients and increases the rate of passage of 

digesta through the digestive tract (Bach Knudsen, 2001). Noteworthy, increased digesta 

viscosity reduces activity of digestive enzymes in a viscous solution and nutrient flux in 

the mucous layer (Balasubramanian et al., 2018). Increased endogenous nutrient losses 

and increased thickness of the layer of unstirred water adjacent to the mucosa also lead 

to decreased digestion and absorption of nutrients (Lange, 2000; Leenhouwers et al., 

2007b). These suggested that increased digesta viscosity may reduce nutrient digestion 

and absorption.  
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1.5.2. Effect on glucose metabolism 

The presence of β-mannans in the diet of monogastric animals, including fish, 

has been reported to delay intestinal absorption of glucose (Sinha et al., 2011). For 

example, African catfish fed diets containing 400 g kg −1 rye showed decreased plasma 

glucose levels than fish fed diets without rye inclusion (Leenhouwers et al., 2007a). 

Previous work evidenced that inclusion of guar galactomannans and alginates as sources 

of NSPs, reduced glucose availability in Atlantic salmon (Salmo salar) compared to fish 

diets without guar gum and alginates inclusion (Storebakken et al., 1998). 

1.5.3. Effect on protein  

The presence of non-starch polysaccharides (NSPs), such as β-mannans, in fish 

diets has been shown to negatively impact protein and amino acid digestibility. 

Leenhouwers et al. (2006) investigated the effects of guar gum, an NSPs-rich ingredient, 

on digestibility in fish. The study found that inclusion of guar gum at levels of 40 and 

80 g kg−1 diet increased digesta viscosity and a corresponding decrease in the apparent 

digestibility coefficient of protein. Previous research also observed reduced protein 

digestibility in trout fed diets containing guar gum, a high-mannan feed ingredient 

(Morken et al., 2011). Another study reported that African catfish fed a diet containing 

high-viscosity rye had a more significant protein digestibility reduction than those fed 

low-viscosity wheat (Leenhouwers et al., 2006). These findings suggest that the 

viscosity of digesta can directly impact protein and amino acid digestibility. Further 

research is needed to understand the effects of different levels of NSPs-rich ingredients 

and different fish species on digestibility of protein and amino acids. 

1.5.4. Effect on lipid  

In addition to increased intestinal viscosity, β-mannans modify intestinal 

functions, impairing endogenous secretion of water, proteins, electrolytes, and lipids 

(Angkanaporn et al., 1994). NSPs can increase bile acid secretion and result in a 

significant loss of bile acids in the feces (Ikegami et al., 1990). This can result in 

increased hepatic synthesis of bile acids from cholesterol to restore homeostasis, 

influencing absorption of lipids and cholesterol in the intestine, thereby dropping blood 

cholesterol levels (Hossain et al., 2003). Additionally, β-mannans can influence lipid 

metabolism in the intestine through binding with bile salts, lipids, and cholesterol 
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(Ouwehand et al., 2009). β-mannans can trap bile salts, thus reducing their efficiency in 

fat solubilization and, consequently, impairing lipid absorption (Ebihara and 

Schneeman, 1989). Besides that, the increased digesta viscosity caused by β-mannans 

negatively affects lipid emulsification and consequently promotes reduced lipolysis 

(Pasquier et al., 1996). 

1.6. Exogenous enzymes in fish nutrition 

The use of exogenous enzymes or enzyme complexes in fish nutrition, can 

improve growth performance, increase digestibility, and contribute to the reduction of 

nutrient excretion in the aquatic environment, positively impacting the water quality of 

production systems (Magalhães et al., 2016). Carbohydrases encompass all enzymes 

that catalyze a reduction in the molecular weight of polymeric carbohydrates, with over 

80% of the global carbohydrase market being accounted for by two dominant proteins, 

xylanase and glucanases (Castillo and Gatlin, 2015). Despite this, the use of 

carbohydrases in aquaculture has not been widespread, despite its positive effects 

(Castillo and Gatlin, 2015). Studies that have been conducted with the use of 

carbohydrates in aquatic species have shown that supplementation of exogenous 

carbohydrase in fish fed plant-based diets improves nutrient digestibility and reduces 

nutrient excretion (Kiarie et al., 2021). Although some fish species are generally known 

for their inefficient metabolism of glucose, the use of carbohydrases can have positive 

effects not only on carbohydrate digestibility but also on protein and lipid digestibility 

of plant-based foods (Sinha et al., 2011). Based on promising results and opportunities 

found in aquaculture fish species, further attention should be devoted to this matter as it 

could be a tool to increase the use of plant-based feeds and ensure aquaculture 

sustainability. 

1.7. β-mannanase 

Endo-1,4-β-mannanase is a crucial carbohydrase for the depolymerization of 

mannans, glucomannans, galactomannans, and galactoglucomannans. This enzyme 

catalyzes through the random hydrolysis of β-1,4-mannan bonds in the mannan 

backbone (Stålbrand et al., 1993). Endo-1,4-β-mannanase releases linear and branched 

chains of mannan oligosaccharides or mannan oligosaccharides of various lengths, and 

these are hydrolyzed to β-mannosidase and α-galactosidase monomers. Its action causes 
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a rapid decrease in the viscosity of polysaccharide solutions, increasing the polymer 

accessibility with other enzymes (Kremnický and Biely, 1997) (Figure 6). 

 

 

Figure 6. Natupulse® TS is an NSPs enzyme. As an endo-1,4-β-mannanase, it 

hydrolyzes β-mannans into smaller particles (Choct et al., 2010; Hsiao et al., 2006; 

Knudsen, 2014; Shastak et al., 2015; Slominski, 2011). 

 

Natupulse® TS is a carbohydrase, more specifically, an endo-1,4-β-mannanase, 

developed by BASF, and it hydrolyzes β-mannans into smaller particles. This β-

mannanase has various effects on viscosity, growth pergormance, digestibility, intestinal 

microbiota, SCFAs production, and intestinal health in distinct species, such as poultry, 

turkey, swine, and fish (Kiarie et al., 2021). The main mechanism of action of β-

mannanase is:  

• Reduction of digesta viscosity: 

Studies on monogastric animals have shown that reduced digesta viscosity due 

to NSPs-degrading enzyme supplementation is the main factor responsible for the 

observed enhanced performance response on feeding plant materials rich in NSPs 

(Latham et al., 2015; Leenhouwers et al., 2007a, 2006; Zhang et al., 2021). In this sense, 

by reducing viscosity, the digesta can flow more easily through the gut, allowing for 

greater contact between digestive enzymes, thereby increasing nutrient absorption 

(Sinha et al., 2011). Additionally, reducing viscosity can promote beneficial gut 

microbes' growth, which are essential for optimal gut health and overall animal 
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performance (Wang et al., 2022). A schematic representation of digesta viscosity and 

the access of digestive enzymes is presented in Figure 7. 

 

Figure 7. Natupulse® TS reducing the viscosity of digesta (Choct et al., 2010; Hsiao et 

al., 2006; Knudsen, 2014; Shastak et al., 2015; Slominski, 2011). 

 

• Disruption of cell wall integrity: 

The cell wall in cereals and legumes consists mainly of cellulose, 

hemicellulose, and arabinoxylan (Ebringerová, 2005). The activity of β-mannanase 

degrades mannans and creates “holes” in the cell wall (Karina and Garcia, 2018). This 

allows hydration with water and pancreatic enzyme action, allowing better digestion of 

nutrients (Jiang et al., 2022). A schematic representation of the increased cell wall 

permeability caused by the addition of β-mannanase is presented in Figure 8. 
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Figure 8. Natupulse® TS supports an increase in permeability of intact soybean cell 

walls (Choct et al., 2010; Hsiao et al., 2006; Knudsen, 2014; Shastak et al., 2015; 

Slominski, 2011). 

 

• Stimulation of bacterial population: 

β-mannanase breaks down β-mannans and reduces chain length, producing 

smaller polymers and oligomers (Ma et al., 2022). These fragments further become 

small enough to act as a substrate for gut microbiota fermentation, modulating the 

profile of SCFAs production, which reduces gut pH and retro-influence the gut 

microbiota (Xu et al., 2020). However, care must be taken with the levels of enzyme 

used, once, overdosed can reduce the size of the oligosaccharides to monosaccharides. 

If excess monosaccharides are produced, it may result in osmotic diarrhea and/or poor 

performance (Schutte, 1990). A schematic representation of how microbiota is 

influenced by β-mannanase addition is presented in Figure 9.  
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Figure 9. Natupulse® TS cleaves ß-mannans resulting in mannan-oligosaccharides 

(MOS) (Choct et al., 2010; Hsiao et al., 2006; Knudsen, 2014; Shastak et al., 2015; 

Slominski, 2011). 

 

The effects of β-mannanase supplementation of β-mannanase in fish feed have 

been proven to improve feed efficiency and increase growth performance rate, leading 

to a more cost-effective and sustainable aquaculture industry. Although there is a need 

for more attention to understanding the effects of β-mannanase in Nile tilapia diets 

(Castillo and Gatlin, 2015; Chen et al., 2016; Sinha et al., 2011). 

1.8. Gut microbiome 

Gut microbiota comprises the community of microbes (e.g., Archaea, bacteria, 

fungi, protozoa, yeast) that live in the gastrointestinal tract. The microbiome, although 

often used synonymously with the microbiota, represents the genome of the microbiota 

(Burokas et al., 2015). The function of the microbiota and the physiological responses 

of the host depend on several intrinsic and extrinsic factors, such as the composition of 

the microbiota present in the gastrointestinal tract (Figure 10) (Vigneri, 2014). Although 

there is a significant variation in the composition of the intestinal microbiota of fish 

between species and individuals, some phyla demonstrate to be dominant, such as 
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Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Fusobacteria 

(Eichmiller et al., 2016). 

 

 

Figure 10. Intrinsic (red box) and extrinsic factors (yellow box) can alter the gut 

microbiota (green box) and its downstream effects on the fish host (Butt and Volkoff, 

2019). 

Sequencing data analysis revealed a peculiarly low phylogenetic diversity in fish 

gut, with Proteobacteria, Firmicutes, and Bacteroidetes representing up to 90% of the 

intestinal microbiome of fish of distinct species (Ghanbari et al., 2015). Actinobacter, 

Acinetobacter, Aeromonas, Flavobacterium, Lactococcus and Pseudomonas are obligate 

anaerobic bacteria predominantly found in the intestine of freshwater species, in addition 

to genera such as Bacteroidetes, Clostridium, Fusobacterium and Enterobacteriaceae 
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(Cahill, 1990). The presence and diversity of gut microbiota are influenced by several 

factors (Gallo et al., 2020). 

1.8.1 Factors affecting the microbiome in the gastrointestinal tract 

• Genetic 

Genetics has already been shown to be a factor that influences the intestinal 

microbiota, and intra and interspecific variations in the microbiota have been 

demonstrated (Li et al., 2012). To date, host genetics have been considered the most 

influential in the formation of the microbiota in fish (Butt and Volkoff, 2019). In contrast, 

in a study carried out with channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus 

furcatus), reared under the same environmental conditions, they showed similar 

microbiomes, suggesting that a shared environment can overcome the genetic differences 

of the host (Bledsoe et al., 2018). 

• Environment and fish size 

Research in zebrafish has revealed distinctions in gut microbiota between 

juvenile and sexually mature individuals, with juveniles exhibiting greater bacterial 

diversity in their intestinal microbiota compared to adults. This can be attributed to the 

variations in circulating hormones present in sexually mature fish and their impact on the 

microbiota (Cantas et al., 2012). Furthermore, gut-associated lymphoid tissue (GALT) 

may interact differently with the gut microbiota in juveniles and adults, as this system is 

not fully developed in juveniles (Figure 11). 
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Figure 11. Schematic representation of the gut-associated lymphoid tissue (GALT) 

(Spahn and Kucharzik, 2004; Zgair et al., 2016). 

 

• Diet/Eating habits  

Dietary habits can directly influence intestinal microbiota composition 

(Vatsos, 2017). Intestinal microbiota diversity is lower in carnivorous < omnivores < 

herbivores fish (Wang et al., 2018). Extreme dietary changes, such as fasting, or 

ingredient changes, also shape the gut microbiota of fish. Such differences may explain 

the fact that during extended periods of fasting, morphological changes occur due to 

reduced nutrient absorption (Bruce et al., 2018). 

The effect of food intake on intestinal flora is not restricted to nutritional 

composition but also to the source of nutrients. A study carried out with common carp 

shows that an increase in fiber consumption causes an increase in cellulolytic bacteria, 

such as Aeromonas, Enterobacter, Enterococcus, Citrobacter, Bacillus, Raoultella, 

Klebsiella, Hydrotalea, Pseudomonas, Brevibacillus (Li et al., 2014). Plant-derived 

proteins have been associated with a significantly reduced diversity of microorganisms, 

with relative abundances of Lactobacillales, Bacillales, and Pseudomonadales, while 

animal-derived proteins nourish more Bacteroidetes, Clostridiales, Vibrionales, 

Fusobacteriales and Alteromonadales (Michl et al., 2017). 

1.8.2. Physiological functions of the intestinal microbiota 



18 
 

 

Recent studies suggest that the gut microbiota is involved in body homeostasis, 

consumption, digestive, metabolic, and immune processes (Gonçalves and Gallardo-

Escárate, 2017; Mayer et al., 2015). However, the gut microbiota influences the brain-

gut axis, affecting both the gut and the brain, thus helping to maintain homeostasis, as 

exemplified in Figure 12 (Cryan and Dinan, 2012; Vigneri, 2014). 

 

 

Figure 12. Factors influencing the diversity and function of the gut microbiome of fish 

(Talwar et al., 2018). 

 

Research with germ-free mice, therefore, without gut microbiota, are leaner than 

mice with established microbiota, even though they consume fewer calories than germ-

free mice (Duca et al., 2012). In addition, such mice have lower appetite-regulating 

hormones, such as leptin and ghrelin, demonstrating that the intestinal microbiota is 

directly involved in regulating appetite and metabolism (Figure 13) (Han et al., 2021). 
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Figure 13. Overview of the gut-microbiota-brain axis in feeding and digestion (Butt and 

Volkoff, 2019). 

 

Some of the metabolites produced by the intestinal microbiota can act on 

enterocytes and regulate their intestinal barrier function and nutrient absorption capacity 

(Ghosh et al., 2021). Also, in enterocytes, intestinal microbiota metabolites can modify 

the secretory activity of enterocytes, affecting their production of intestinal peptides that 

modulate intestinal motility and enzyme secretion (Agustí et al., 2018; Franchini et al., 

2014; Venkatesh et al., 2014). Once enzyme activity is altered in the intestine, there are 

significant impacts of its influence on the metabolism of nutrients such as carbohydrates 

and lipids (Cani and Knauf, 2016; Tolhurst et al., 2012). 

Metabolic secretions of microbiota include specific metabolites such as 

propionic, acetic, and butyric acids, which affect digestive and metabolic processes 

(Tolhurst et al., 2012). Although there are many other metabolic secretions from the 

intestinal microbiota, a representative part of such secretions is SCFAs. In addition, it has 

several more effects, such as effects on pH and gut morphological changes (Zhang and 

Davies, 2016).  
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1.9.Short-Chain Fatty Acids 

Short-chain fatty acids are carboxylic acids with aliphatic tails and have linear 

and branched conformations, including acetic, propionic, butyric, valeric, isobutyric, 

and isovaleric acids (Cook and Sellin, 1998). Among them, acetic acid (C2), propionic 

acid (C3), and butyric acid (C4) are the most abundant (95%), with an average molar 

ratio of 60:20:20, respectively (Cummings et al., 1987). 

Acetic acid is produced from pyruvate by acetyl-coenzyme A or the Wood-

Ljungdahl pathway (Ragsdale and Pierce, 2008). The propionic acid is the primary 

fermentation metabolite of Bacteroidetes. It is generated from the conversion of 

succinate to methyl malonyl-CoA via the succinate pathway or produced from the 

acrylate pathway via lactate as a precursor (Hetzel et al., 2003). Also, deoxyhexoses like 

fucose and rhamnose can be used as substrates for propionic acid synthesis via 

propanediol (Koh et al., 2016). Butyric acid is the primary Firmicutes metabolite and is 

formed by the condensation of molecules of acetyl-CoA, reduced to butyryl-CoA, and 

converted to butyric acid by butyric acid phosphotransferase and butyrate kinase (Ait-

Belgnaoui et al., 2014; Ragsdale and Pierce, 2008). Butyryl-CoA is also converted to 

butyrate via acetyl-CoA via transferase, and some microorganisms in the intestine use 

lactate and acetate to synthesize butyrate, thus preventing lactate accumulation and 

stabilizing the intestinal environment, as shown in Figure 14 (Ma et al., 2022). 
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Figure 14. Synthesis pathways of SCFAs and the primary role in carbohydrate and lipid 

metabolism. PST: phosphotransacetylase; AK: acetokinase; W-L: Wood-Ljungdahl; 

ME-COA: methyl malonyl-CoA; PO: pyruvic oxidase; PT: phosphotransferase; BK: 

butyrate kinase; TCA: tricarboxylic acid cycle; MVA: mevalonic acid; β-HBA: β-

hydroxybutyric acid; HMG-CoA: β-hydroxy-β-methyl glutaryl-coenzyme A (Hetzel et 

al., 2003; Ma et al., 2022; Ragsdale and Pierce, 2008).  

 

Studies show that the chemical composition of SCFAs is mainly dictated by 

the substrate's chemical structure and microbiota activity (Flint et al., 2014). Dietary 

fiber is the main food component that affects the production of SCFAs, derived mainly 

from ingredients of plant origin and NSPs fractions. Also, the amount and type of fiber 

consumed directly influence the type and amount of SCFAs produced by the microbiota 

(Ríos-Covián et al., 2016). Total SCFAs concentrations in grass carp 

(Ctenopharyngodon idella) gut decreased by almost 50% with dietary changes, and a 

positive correlation was observed between acetate levels and bacterial counts, thus 

demonstrating the effects of fiber type on SCFAs composition and production by the 

microbiota (Flint et al., 2014; Hao et al., 2017a). The pH profoundly influences SCFAs 

from the lumen to the colonocytes and the growth of SCFAs-producing bacteria (Cook 

and Sellin, 1998). Other factors such as environment, intestinal morphology and region, 

rate of passage, and microbiota composition influence SCFAs production (Canfora et 

al., 2015; Clements et al., 2014; Hao et al., 2017b; Wu et al., 2015). Microbial 
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metabolism involved in the fermentation of indigestible carbohydrate are shown in 

Figure 15 (Piazzon et al., 2017). 

 

 

Figure 15. Overview of the production of acetate, propionate and butyrate by microbial 

fermentation in the intestine (Louis et al., 2014; Reichardt et al., 2018; Tran et al., 2020).  

 

About 95 to 99% of SCFAs produced in the intestine are rapidly absorbed in 

the hindgut in monogastric animals (Den Besten et al., 2013). In tilapia, SCFAs 

absorption is driven mainly by anion exchange with bicarbonate (ratio of 1:4) between 

intestinal lumen and the blood (Titus and Ahearn, 1992). Once absorbed, colonocytes 

use about 98% of the butyrate, and the remainder of the SCFAs is transported to the 

liver (Den Besten et al., 2013; Morrison and Preston, 2016; Ríos-Covián et al., 2016). 

The remaining butyrate and acetate are destined for lipogenesis, while propionic acid is 

used for hepatic gluconeogenesis are excreted (Morrison and Preston, 2016; Ríos-

Covián et al., 2016). The effects of SCFAs on host metabolism have been evaluated 

with several fish species, including performance improvements, feed efficiency, 

immune response, survival, glucose metabolism, lipid metabolism (Byrne et al., 2015; 
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Corrêa-Oliveira et al., 2016; Hoseinifar et al., 2017; Koh et al., 2016; Louis et al., 2014). 

Additionally, a special attention is driven to effects to butiric acid, Butyrate, salt of 

butyric acid, is considered an important nutrient for integrity of the epithelium along the 

gastrointestinal tract, where it has several effects in cells, influencing their maturation 

and differentiation, promoting an increase in cell proliferation and helping to maintain 

intestinal integrity (Morrison and Preston, 2016; Natarajan and Pluznick, 2014; Tan et 

al., 2014). 

1.10. Intestinal morphology  

Intestinal morphology represents a barrier of the organism against pathogens, 

including mechanical, chemical, immune and microbial barriers (Dawood, 2021). 

Disruption of the integrity of any of these barriers would lead to metabolic dysfunction 

of the body and affect the health of the intestine, which in turn results in a compromising 

of animal production performance and health (Camilleri et al., 2012). 

Several histological dynamics in the intestine, such as crypt cell proliferation, 

cell migration along the crypt-villus axis, and cell extrusion from the apex of the villus 

via apoptosis, are all part of the control of cell desquamation and a dynamic renewal 

process in small intestine cell (Rombout Jan et al., 2011). The high viscosity of digesta 

in the lumen can increase the rate of villous cell loss, leading to villous atrophy, a 

phenomenon associated with increased production of crypt cells and, generally, with an 

increased crypt depth (Montagne et al., 2003). 

Additionally, between the effects of β-mannanase in the diets, are the releasing 

of mannan oligosaccharides (MOS). The MOS are non-digestible oligosaccharides 

derived via partial hydrolysis of the mannans polysaccharide (Tester and Al-Ghazzewi, 

2013). It is a prebiotic widely used in aquaculture due to its positive effects on growth, 

which can be generally divided into two main groups: α- and β-MOS (Lu et al., 2019). 

While α-MOS are obtained by cleavage of α-(1,6) bonds from yeast cell wall mannans, 

β-MOS are commonly obtained from mannans-rich plants through cleavage of β-(1,4)-

glycosidic bonds (Yamabhai et al., 2016). Dietary MOS supplementation improved fish 

growth performance and gut health, and the results showed that appropriate dietary 

MOS supplementation could improve intestinal microbiota and increase the 

concentration of propionic acid and butyrate, suggesting that dietary MOS supplements 

were beneficial for fish gut health (Figure 16) (Liu and Huang, 2018). 
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Figure 16. Mechanisms action of mannan oligosaccharides pathogen colonization 

inhibition (Faustino et al., 2021). 

 

The MOS protected the intestinal morphology, which may be due to some 

aspects, such as the inhibition of the colonization of pathogenic bacteria on the intestinal 

surface. In addition to reducing excess reactive oxygen species, which can cause 

stomach injuries (Liu and Huang, 2018). Although some effects of MOS in fish 

organisms are known, more studies are still needed to evaluate the effects of the addition 

of β-mannanase on the release and use of MOS. 

1.11. Considerations 

The use of plant ingredients in aquafeeds has been increasing due to their 

relative availability and lower cost. However, plant-based diets also increase NSPs 

contents, particularly mannans, in fish feeds. Currently, there needs to be more 

information on the effects of mannans on fish physiology and nutrition. β-mannans are 

known to affect the viscosity of fish digesta, delaying gastric emptying and decreasing 

nutrient availability, which can negatively impact fish growth performance. The impact 

of mannans on the intestinal ecosystem is also unclear, with some studies suggesting 

that they may have adverse effects on fish growth and health. Supplementing fish diets 
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with exogenous enzymes, such as carbohydrases, can help improve nutrient utilization 

in fish fed plant-based diets. More research is needed to fully understand the effects of 

mannans, including their potential use as immunostimulants in Nile tilapia, and to create 

environmentally sustainable diets for fish farming that comply with sustainability 

principles. Furthermore, it is important to consider the economic dimension of the 

aquaculture system when assessing the use of enzymes such as β-mannanase. These 

suggest that β-mannanase is responsible for breaking down β-mannan, a complex 

carbohydrate found in plant-based feed ingredients.  
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2. OBJECTIVES 

 

To evaluate the effects of graded β-mannanase levels on viscosity of digesta and 

feces, pH of digesta and feces, growth performance, digestibility, digestive enzymes 

activity, blood parameters, SCFA production, gut health, and microbiome modulation in 

juveniles of Nile tilapia. 

 

2.1. Specifc objectives 

 

• Evaluate how increasing levels of β-mannanase affect growth performance, 

body composition and blood parametters of juvenile Nile tilapia; 

• To assess the effects of β-mannanase on digesta viscosity, activity of  

digestive enzymes and nutrient digestibility; 

• Determine the effects of liquid β-mannanase on short-chain fatty acids, gut 

morphology and microbiome responses; 

• Evaluate the effects of increasing levels of β-mannanase on digesta viscosity 

and apparent digestibility coefficients of energy and nutrients, including 

amino acids in juvenile Nile tilapia; 

• To establish a comprehensive correlation between fecal viscosity and nutrient 

digestibility in Nile tilapia fed a fiber-rich diet, using multivariate analysis.  
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Article I - Effect of dietary β-mannanase on growth performance, digesta viscosity, 

short-chain fatty acid, gut morphology, and microbiome of juvenile Nile tilapia fed 

plant-based diet 

ABSTRACT: This study aimed to evaluate graded levels of dietary β-mannanase 

supplementation on growth performance, digesta viscosity, activity of digestive enzymes, 

short-chain fatty acid production (SCFAs), gut morphology, and microbiome of juvenile 

Nile tilapia fed plant-based diets. Fish (n = 504; body weight 7.0 ± 0.43 g) were randomly 

distributed in 24 aquaria of 70 L each in a recirculation aquaculture system in a 

completely randomized design with six treatments and four replicates of 21 fish in each 

aquarium. Fish were fed diets with graded levels of β-mannanase at 0 (control), 1600, 

3200, 4800, 6400, and 8000 TMU kg−1, and hand-fed 12 times a day until apparent satiety 

for eight weeks. Fish fed diet with β-mannanase at 4800 TMU kg−1 showed reduced 

digesta viscosity (−25.8%), body weight gain (+5.4%) and feed efficiency ratio (+12.1%), 

higher activity of amylase (+61.2%), protease (+25.4%) and lipase (+47.7%) enzymes, 

than fish fed control diet. Dietary β-mannanase at 4800 TMU kg−1 increased butyric acid 

content (+63.3%), reduced gut pH (−8.2%), and increased total villus height (+40.4%) in 

relative to fish fed control diet. Analysis of the “core microbiota” revealed that dietary β-

mannanase modulated gut microbiota of juvenile Nile tilapia, and fish fed the diet with 

4800 TMU kg−1 dietary β-mannanase showed higher abundance of beneficial bacteria, 

Proteobacteria, Actinobacteria, Firmicutes, and reduced population of potential harmful 

bacteria (Escheiria sp.). Overall, it concluded that β-mannanase at level 4800 TMU kg−1 

in the diet enhances the growth performance of juvenile Nile tilapia by reducing digesta 

viscosity, enhancing digestive enzyme activity and short-chain fatty acid production, 

improving gut morphometry, by modulating gut microbiome. The use of liquid 

carbohydrates in diets based on alternative foods for tilapias emerges as an innovative 
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tool to improve the productive performance of fish sustainably and at a lower production 

cost. 

Keywords: β-mannans, β-mannanase, carbohydrase, Oreochromis niloticus, 

microbiome, non-starch polysaccharides 
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1. Introduction  

Nile tilapia (Oreochromis niloticus) is the second most reared freshwater fish 

species worldwide, with omnivorous eating habits, consequently able to take advantage 

of ingredients of plant origin (FAO, 2022). These characteristics are valuable when it 

arises to not competing with human food, which is seen as a great advantage, given the 

growing demand for quality and sustainable food (Schader et al., 2015). However, plant-

origin ingredients contain several anti-nutritional factors, such as non-starch 

polysaccharides (NSPs), that limit their inclusion in aquafeeds (Castillo and Gatlin, 2015; 

Sinha et al., 2011). Soybean meal is a particularly NSP-rich feed ingredient, containing 

1.3-2.7% of β-mannans, which are primarily composed of galactomannans and 

glucomannans, and β-mannans that are not digested by fish (Tester and Al-Ghazzewi, 

2013; Tiwari et al., 2020). β-mannans cause an increase in digesta viscosity, causing 

impairments in the diffusion and contact of digestive enzymes with their respective 

substrates (Chen et al., 2016; Liu et al., 2022; Siti-Norita et al., 2015). Such impairments 

reduce the digestibility and absorption of nutrients, thereby decreasing fish's growth 

performance (Dawood and Shi, 2022). Thus, using β-mannanase effectively reduces the 

anti-nutritional effects caused by NSPs (Castillo and Gatlin, 2015; Chen et al., 2016; 

Dawood et al., 2020).  

The β-mannanase enzyme can hydrolyze the mannan bonds present in food. Its 

primary mode of action is the reduction of digesta viscosity, allowing for greater diffusion 

and access of digestive enzymes to substrates. Thus, β-mannanase increases digestibility 

and utilization of nutrients, thereby improving growth performance in monogastric 

animals (Chen et al., 2016; Sallam et al., 2020; Yilmaz et al., 2007). Furthermore, the 

release of additional nutrients and mannans for digestion by the enzyme leads to increased 

carbohydrate fermentation by the intestinal microbiota, which has been shown to 
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positively modulate the intestinal microbiota, stimulating beneficial bacteria production 

for the host's health and well-being (Guan et al., 2021; Tiwari et al., 2020). This 

modulation may also lead to a reduction in pathogenic organisms through changes in the 

short-chain fatty acid (SCFAs) production pattern, responsible for a decrease in intestinal 

pH (Dawood et al., 2022; Louis et al., 2014). SCFAs, a by-product of carbohydrate 

fermentation by intestinal microorganisms, can be used as an energy source and have 

been shown to stimulate intestinal health through an increase in the height and width of 

villi, as certain SCFAs, such as butyric acid, are utilized almost exclusively for the 

nutrition of intestinal absorptive cells (He et al., 2020; Kasubuchi et al., 2015; Tran et al., 

2020). However, whether the β-mannanase regulates the underlying mechanism of gut 

health of Nile tilapia is largely unknown. Thus, the current research aimed to explore the 

effects of graded levels of exogenous β-mannanase supplementation on growth 

performance, blood parameters, digestive enzyme activity, SCFAs production, gut 

morphology, and microbiome composition in juvenile Nile tilapia fed extruded vegetable-

based diets. 

2. Material and methods 

2.1. Ethics statement 

All fish procedures were performed following the Guidelines for Care and Use 

of Laboratory Animals and approved by the Animal Ethics Committee of the State 

University of Ponta Grossa (Protocol: 22.000024303-4). 

2.2. Diets 

A basal diet contained 311.2 g kg−1 of crude protein and 18.98 MJ kg−1 of gross 

energy, without β-mannanase supplementation (control) was formulated based on 
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soybean meal, broken rice, wheat bran, corn, and poultry by-product meal as primary 

food ingredients, and formulated to meet the dietary requirements of Nile tilapia (NRC, 

2011). From the basal diet, five other diets were elaborated by supplementing 1600, 3200, 

4800, 6400 and 8000 TMU kg−1 diet of β-mannanase. Exogenous β-mannanase enzyme 

inclusion replaced an equal silica amount, as shown in Tables 1 and 2. 
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Table 1. Ingredients composition of the experimental diets (g kg−1 diet). 

Ingredients g kg−1 (as-fed basis) 

Broken ricea 80 

Soybean mealb 440 

Poultry by-product mealc 150 

Wheat branb 100 

Cornb 165 

Soybean oild 20 

Corn starche 20 

ᴅʟ-methionine 99f 2 

ʟ-lysinef 3 

Dicalcium phosphateg 10 

Mineral and vitamin mixh 8 

Inert (Silica)i 1 

Cr2O3
j 1 

a Armazém São Vito, São Paulo, SP, Brazil.  

b Bunge, Ponta Grossa, PR, Brazil. 
c BRF, Toledo, PR, Brazil. 
d Coamo, PR, Brazil. 
e Yoki, São Bernardo do Campo, São Paulo, Brazil. 
f Ajinomoto Animal Nutrition Division, SP, Brazil. 
g Sarfos, Goiás, Brazil. 
h Customized premix (Composition per kilogram of feed (IU or mg kg−1 of diet): vitamin 

A (retinyl acetate), 6,000 IU; vitamin D3, (cholecalciferol), 1,000 IU; vitamin E (ᴅʟ-α-

tocopheryl acetate), 60 mg; vitamin K3 (menadione Na-bisulphate), 12 mg; vitamin B1 

(thiamine HCl), 24 mg; vitamin B2 (riboflavin), 24 mg; vitamin B6 (pyridoxine HCl), 

20 mg; vitamin B12 (cyanocobalamin), 0.05 mg; folic acid, 6 mg; ᴅ-calcium 

pantothenate, 60 mg; ascorbic acid (ascorbyl polyphosphate), 350 mg; ᴅ-biotin, 0.24 

mg; choline chloride, 800 mg; niacin, 120 mg; ferrous sulfate (FeSO4.H2O.7H2O), 50 

mg; copper sulfate (CuSO4.7H2O), 3 mg; manganese sulfate (MnSO4.H2O), 20 mg; zinc 

sulfate (ZnSO4.7H2O), 30 mg; potassium iodide (KI), 0.4 mg, cobalt sulfate 

(CoSO4.4H2O), 0.25 mg; sodium selenite (Na2SeO3), = 0.1 mg, BHT, 200 mg; calcium 

propionate, 1000mg. 
i Merck Company, Germany. 
j Sygma-Aldrich Brazil Ltda, 99.5%, São Paulo, SP, Brazil. 
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All diets were ground through a 0.8-mm screen in a centrifugal mill (Viera MC 

680B, Tatuí, SP, Brazil). The extrusion process was performed through a 1.5-mm die 

diameter in a single screen extruder with die temperature set at 92°C (Exteec EX30, 

Ribeirão Preto, SP, Brazil), obtaining pellets with 2.5-mm of diameter and floatability 

rate higher than 99%. After that, the pellets were dried in a drying drum with rotary drier 

at 55ºC (pellet temperature) for 10 min (Model E-62, Ferraz Máquinas e Engenharia 

LTDA, Ribeirão Preto, SP, Brazil). 
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Table 2. Analyzed composition of the basal diet (g kg−1 dry matter basis). 

Item g kg−1 (as-dry matter basis) 

Dry matter 932.1 

Gross energy (MJ kg−1) 18.98 

Crude protein 311.2 

Crude fiber 38.24 

Crude lipid 31.40 

Ash 64.3 

Amino acid  

Essential amino acid  

Arginine 1.910 

Histidine 0.811 

Isoleucine 1.149 

Leucine 2.536 

Lysine 1.796 

Methionine 0.582 

Phenylalanine 1.620 

Threonine 1.409 

Tryptophan 0.366 

Valine 1.687 

Non-essential amino acid  

Alanine 1.722 

Aspartic acid 2.829 

Cysteine 0.511 

Glutamic acid 4.756 

Glycine 1.892 

Proline 0.000 

Serine 1.807 

Tyrosine 0.944 

 

Liquid β-mannanase (Natupulse® TS, BASF, Ludwigshafen am Rhein, 

Germany; 8000 TMU g−1) were top-sprayed onto each kilogram of diet to supply 1600; 
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3200; 4800; 6400 and, 8000 TMU kg−1 diet of endo-1,4-β-mannanase, being applied 0.2; 

0.4; 0.6; 0.8 and 1.0 g kg−1 of Natupulse. The same procedure was applied to 

unsupplemented diet to receive the same treatment, but without the commercial β-

mannanase inclusion in soybean oil.  

2.3. Fish and Experimental Design 

The experiment was conducted at the Aquaculture Laboratory of the State 

University of Ponta Grossa, Ponta Grossa, PR, Brazil. All-male masculinized Nile tilapia 

fingerlings (n = 1500; 3.0 ± 0.5 g; Premium Aquabel strain) were obtained from Aquabel 

Fish Farm (Rolândia, PR, Brazil). Fish were acclimated for a 4-week period in a circular 

tank (500 L), with temperature and dissolved oxygen set at 28°C and 6 mg L−1, 

respectively. Fish were hand-fed a commercial extruded diet (Supra, 1.0 mm Ø; Alisul 

Alimentos, Maringá, PR, Brazil), with 460 g kg−1 of crude protein, six times daily for 21 

days. Afterward, fish (n = 504; 7.0 ± 0.43 g; mean ± SD) were grouped-weighed and 

randomly distributed into 24 plastic aquaria (70 L each) equipped with a recirculating 

system composed of a decanter to remove solids, a mechanical filter with bio-balls, heater 

(3000W) and a central UV-light disinfection system (55W). The aeration system was 

comprised of a centrifugal 0.5-HP blower (Sulpesca, Toledo, PR, Brazil) fitted with 

silicone airline tubing, with a porous stone in each experimental aquarium. Each aquarium 

was siphoned daily to keep a renovation of 10% of the water volume and remove fish 

metabolites. Temperature was set at 28 ± 0.5°C, dissolved oxygen was kept at 6.2 ± 0.2 

mg L−1, and water flow was kept at 1.2 L min−1 per aquarium throughout the trial. Data 

of individual aquarium temperature and dissolved oxygen were monitored daily using 

YSI Multi-Parameter Water Quality Meter (YSI Incorporated, Ohio, USA). Water quality 

parameters were monitored weekly with a pH-meter (TEC-2, Piracicaba, SP, Brazil) and 
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kept at 7.0 using calcium carbonate and phosphoric acid; ammonia, nitrite, and nitrate 

analysis were performed using commercial kits (Alfakit, Florianópolis, SC, Brazil), and 

were kept at 0.01; 0.02 and 0.01 mg L−1, respectively. Fish were hand-fed from 8:00 to 

18:00 h; 12 times daily until apparent satiety for 60 days. 

2.4. Sample collection  

At the beginning of the feeding trial, 50 fish with a 24-h period of fasting were 

randomly sampled for initial whole-body composition analysis. On day 59 of the 

experimental trial, all fish were staggered fed, and after 4 h, four fish from each aquarium 

were randomly sampled and euthanized with overdose of tricaine methanesulphonate 

(MS-222;800 mg L−1), individually weighed, and samples of intestine and gut digesta 

activity of pH, digestive enzymes SCFAs and microbiome analysis. For histology 

analysis, the middle part of the intestine (1 cm) of four fish from each aquarium (16 fish 

per treatment) was collected and fixed in 10% buffered formalin for 24 h. Further, the 

mid-intestine content was aseptically collected for microbiome analysis. For this, the gut 

was gently squeezed, and 750 mg of digesta from each fish was collected with a 1,000 

mL micropipette, pooled in a 2-mL cryogenic tube, snap-frozen in liquid nitrogen, and 

stored at −80°C. On day 60, fish were fasted for 24h and bulk weighed, and six fish from 

each aquarium were randomly sampled and euthanized with an overdose of MS-222 

(Sigma‐Aldrich; 800 mg L−1 water) for whole-body proximate composition analysis. In 

parallel, four fish from each aquarium were randomly collected, anesthetized for blood 

collection, and euthanized for liver and visceral fat weight measurements. A pooled 3 mL 

blood aliquot was collected from the caudal vein for biochemical analysis. Plasma was 

obtained by centrifugation at 3000 rpm for 10 min (Kasvi – SKU K14-1215, São José dos 

Pinhais, PR, Brazil). Feces samples were collected daily from days 50 to 58 of the feeding 
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trial, 30 min. after feeding, kept in falcon tubes (50 mL), and frozen at −20°C for viscosity 

analysis.  

2.5 Chemical analysis 

The proximate composition of diets and whole-body fish samples were 

performed according to standard methods of Association of Official Analytical Chemists 

(AOAC, 2002). Moisture analysis was determined by oven-drying at 105°C until constant 

weight, while crude lipid analysis was performed by ether-extraction method (Folch et 

al., 1957). Crude protein (N × 6.25) analysis was performed using the macro Kjeldahl 

method (Tecnal, MA-036, Piracicaba, SP, Brazil) after acid hydrolysis. The analysis of 

ash was achieved by overnight combustion in a muffle furnace at 550°C (Tecnal, 2000B, 

Belo Horizonte, MG, Brazil). The crude fiber analysis was performed according to loss 

on ignition of dried lipid-free residues following digestion with 1.25% H2SO4 and 1.25% 

NaOH. The profile of dietary amino acids were determined by High Performance Liquid 

Chromatography (HPCL) (Hitachi, Tokyo, Japan), at the Laboratory of Ajinomoto do 

Brasil Indústria e Comércio de Alimentos Ltda, Division of Animal Nutrition (São Paulo, 

SP, Brazil) (Rayner, 1985). Tryptophan was determined after alkaline hydroxylation of 

the sample with lithium hydroxide. 

2.6 Calculations 

Growth performance parameters were calculated as follows: 

• Body weight gain (%) = [(final weight (g) − initial weight (g)) / (initial weight 

(g))] × 100. 

• Feed intake (% of body weight per day−1) = [dry feed intake (g) / average fish 

weigh (g) / days fed] × 100. 
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• Feed efficiency ratio = [weight gain dry feed consumed (g) / dry feed consumed 

(g)]. 

• Protein efficiency ratio = (%) = [(protein gain (g) x protein intake (%))] x 100. 

• Energy retention efficiency (%) = [(energy gain (MJ) / energy intake (MJ))] × 

100. 

• Hepatosomatic index (%) = [(liver weight (g) / body weight (g))] × 100. 

• Visceral fat ratio (%) = [(visceral fat weight (g) / visceral fat (g)] × 100. 

• Survival (%) = number of fish at the end of the experimental trial / number of 

fish at the beginning of the experimental trial x 100. 

2.7. Digesta pH and viscosity 

Digesta pH was measured using a pH-meter (Kasvi – ATC-K39-0014PA, São 

José dos Pinhais, PR, Brazil), placed directly in the gut digesta. Feces samples were 

centrifuged at 3000 rpm x g for 10 min (Kasvi – SKU K14-1215, São José dos Pinhais, 

PR, Brazil) to obtain the liquid phase. The supernatant obtained was placed in the 

viscometer (Brookfield Digital Viscometer, Model DV-II Version 2.0, Brookfield 

Engineering Laboratories Inc., Stoughton, MA), set at 28°C. The viscosity measurement 

was the average 50.0/s shear rate, and the viscosity values were recorded as apparent 

viscosity in centipoise (cP). 

 2.8. Activity of digestive enzymes 

Intestinal tissues were homogenized in buffer (10 mM phosphate / 20 mM Tris-

pH 7.0) for 1 minute (4°C) using Potter Dounce homogenizer. Then the samples were 

centrifuged at 5000 rpm for 5 minutes, and the supernatants were collected for 

enzymatic assays. Amylase and lipase activity were estimated using commercial kits 
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(Kit Bioclin). The total non-specific proteolytic activity was measured using the casein 

hydrolysis method (Kunitz, 1946) with minor modifications (Walter, 1984). The 

enzymatic reaction consisted of 1% casein in water (0.25 mL), 0.1 M Tris HCl pH 7 

(0.25 mL) and enzyme sample (0.1 mL), being incubated for 1 h at 3°C. The reaction 

was stopped by adding 0.6 ml of 8% trichloroacetic acid. After holding for 1 h at 2°C, 

samples were centrifuged at 1800 × g for 10 min, and absorbance of the supernatant was 

recorded at 340 nm. Tyrosine was used as a standard, and one unit of enzyme activity 

was defined as the amount of enzyme required to catalyze the formation of 1 µg of 

tyrosine per minute. 

2.9. Blood parameters 

Blood parameters were analyzed by spectrometry in a semi-automatic 

biochemical analyzer (BIO-2000 IL, Barueri, SP, Brazil) using commercial kits (Bioclin 

– Quibasa, Belo Horizonte, MG, Brazil) to determine total protein (Cat. 90.019.00), 

triglycerides (Cat. 90.022.00), cholesterol (Cat. 90.021.00), and glucose (Cat. 90.017.00) 

contents. Additionally, the blood parameters of alanine aminotransferase (Cat. 90.013.00) 

and aspartate aminotransferase (Cat. 90.015.00) enzymes were analyzed using 

commercial kits. 

2.10. Short Chain Fatty Acids 

The concentrations of acetic, propionic and butyric acids in the samples were 

determined by gas chromatography using Shimadzu© GC-2010 Plus chromatograph 

equipped with AOC-20i automatic injector, Stabilwax-DA™ capillary column (30m, 

0.25mm ID, 0.25μm df, Restek©) and flame ionization detector (FID), after acidification 
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with 1 M o-phosphoric acid p.a. (Ref. 100573, Merck©) and fortification with a mixture 

of free volatile acids (Ref. 46975, Supelco©). 

An aliquot of 1μL of each sample was injected with a split ratio of 40:1, using 

helium as carrier gas with a linear velocity of 42 cm.s–1, obtaining the separation of the 

analytes in a chromatographic run of 11.5 minutes. The injector and detector temperatures 

were 250oC and 300oC, respectively, and the initial column temperature was 40oC. The 

column temperature ramp started with a gradient from 40 to 120oC at the rate of 

40oC.min–1, followed by a gradient from 120 to 180oC at the rate of 10oC.min–1 and from 

180 to 240oC at the rate of 120oC.min–1, keeping the temperature at 240oC for another 3 

min. For the quantification of analytes, a calibration of the method was performed with 

dilutions of WSFA-2 standard (Ref. 47056, Supelco®) and glacial acetic acid (Ref. 33209, 

Sigma-Aldrich®) analyzed under the conditions described above. The determination and 

integration of peaks were performed using the software GCsolution v. 2.42.00 

(Shimadzu©). 

2.11. Intestinal histology 

The middle part of the intestines of four fish from each aquarium (16 fish per 

treatment) was sampled (1cm) and fixed in buffered formalin (10%) for 24 hours. 

Intestinal fragments were embedded in paraffin blocks (Prophet et al., 1992), using 

semi-serial 5 µm cross-sectioned, and finally stained with hematoxylin-eosin (HE), 

according to previously described methodology (Dimitroglou et al., 2010). For the 

villous height measurement, 100 intact villi were measured per fish, totaling 1600 

measures per treatment. The histological sections were examined under an optical 

microscope attached to a camera (Pro-Series from Media Cybertechniques, Olympus, 

Japan) to capture images. The total villus height (TVH), villus width (VW), and villus 
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epithelium thickness (VET) were measured using the Image-Pro Plus software (Image 

Pro Plus - version 5.2- Cyber Media). 

2.12. Microbiome 

Commercial kit GenElute™ Soil DNA Isolation Kit (Sigma Aldrich®) was used 

to extract the DNA from the samples, following the protocol recommended by the 

manufacturer. The extracted DNA was quantified by spectrophotometry at 260nm. The 

integrity of the extracted DNA was checked by electrophoresis on a 1% agarose gel, 

stained with a 1% ethidium bromide solution, and visualized with ultraviolet light. A 250-

base segment of the hypervariable region V4 of the ribosomal 16S rRNA gene was 

amplified using universal primers 515F and 806R and the following PCR conditions: 

94°C for 3 min, 18 cycles of 94°C for 45 sec, 50°C for 30 sec and 68°C for 60 sec, 

followed by 72°C for 10 min. The amplifiers were pooled and sequenced in Illumina® 

“MiSeq” sequencer (Degnan and Ochman, 2012). A summary of the sequences used in 

the taxonomic classification is furnished in Table 3.  

Table 3. Summary of the sequences used in taxonomic classification. 

Sample count / summary 

Number of samples 24 

Number of genera 23 

Number of readings 3,230,149 

Minimum number of readings per sample 32,924 

Maximum number of readings per sample 337,408 

 

Readings obtained in the sequencer were analyzed using the QIIME 

(Quantitative Insights Into Microbial Ecology) platform, followed by a workflow of 

removal of low-quality sequences and chimeras and taxonomic classification (Caporaso 

et al., 2011). The identity (> 97%) between the sequences was considered against a 
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database. An average of 140.441 readings per sample were used to generate the 

classification of bacterial communities, normalizing the data and not comparing samples 

with different readings, thus avoiding a taxonomy bias.  

2.13. Statistical analysis 

All results were described as least square means and pooled standard error of 

means (SEM). All data were tested for normality using Kolmogorov–Smirnov test, and 

homogeneity was tested using Levene’s test. Data were analyzed as a two-way ANOVA 

using the General Linear Model (GLM) procedure. The dose-response effect of 

supplemental β-mannanase was determined using an orthogonal polynomial contrast for 

linear and quadratic effects (SAS, version 9.2). In addition, Dunnett’s test procedure was 

used to compare data from each β-mannanase supplementation level with the non-

supplemented diet (control). The Welch test (P < 0.05) was applied for microbiome 

analysis, followed by the Bonferroni correction test. The analyses were performed using 

the statistical metagenomics program STAMP for statistical analysis of metagenomic 

profiles (Parks et al., 2014). The averages for biodiversity between treatments were 

compared using the number of observed OTUs and the Chao1 index by the Kruskal Wallis 

test (P < 0.05) once a non-parametric distribution was detected by the Shapiro-Wilk test. 

Multivariate analysis was employed to conduct principal component (PC) analysis, and 

the score and loading plot were  utilized to ascertain the correlation among individual 

variables of the first two eigenvalues (PC 1 and 2). All data were analyzed according to 

the Proc GLM of the Statistical Analysis System (Version 9.0), and values were presented 

as mean ± standard error. 
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3. Results 

3.1. Growth performance 

The effects of dietary β-mannanase supplementation on the growth performance 

of juvenile Nile tilapia are presented in Table 4. The final body weight (P < 0.001; R2 = 

0.508; Ymax. = 4480 TMU kg–1 β-mannanase), body weight gain (P < 0.018; R2 = 0.248; 

Ymax. = 4320 TMU kg–1 β-mannanase), protein retention efficiency (P < 0.001; R2 = 

0.752; Ymax. = 5360 TMU kg–1 β-mannanase) and energy retention efficiency (P < 0.001; 

R2 = 0.752; Ymax. = 5440 TMU kg–1 β-mannanase) tended to increase, while feed intake 

(P < 0.001; R2 = 0.752; Ymax. = 5520 TMU kg–1 β-mannanase) tended to decrease in a 

quadratic pattern by the polynomial regression analysis in fish fed graded levels of β-

mannanase. 
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Table 4. Growth performance of juvenile Nile tilapia fed the experimental diets1. 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1) by Dunnet´s test (P < 0.05).

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4 Dunnet5 

Initial body weight (g) 7.16 7.13 7.24 7.13 7.14 7.26 0.034 0.619 0.726 0.938 

Final body weight (g) 118.21 119.02 121.57 123.94* 124.11* 118.09 0.509 0.185 <0.001 <0.001 

Body weight gain (%) 1552.4 1570.4 1580.6 1637.0* 1638.3* 1530.1 9.024 0.583 0.018 0.049 

Feed intake (% body weight day−1) 2.97 2.72* 2.67* 2.66* 2.60* 2.67* 0.020 <0.001 <0.001 <0.001 

Feed efficiency ratio 0.99 1.08* 1.10* 1.11* 1.14* 1.10* 0.011 <0.001 <0.001 <0.001 

Protein retention efficiency (%) 38.48 43.69* 46.12* 46.82* 46.05* 45.45* 0.52 <0.001 <0.001 <0.001 

Energy retention efficiency (%) 36.25 41.04* 42.42* 42.85* 42.03* 40.66* 0.36 <0.001 <0.001 <0.001 

Hepatosomatic index (%) 2.95 3.23 3.19 3.31 3.37 3.20 0.060 0.289 0.311 0.785 

Visceral fat ratio (%) 2.14 1.83 1.67 1.99 2.18 1.95 0.044 0.720 0.173 0.067 
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The feed efficiency ratio (P < 0.001; R2 = 0.745; Ymin. = 5440 TMU kg–1 β-mannanase) 

increased quadratically in fish fed graded levels of dietary β-mannanase (Figure 1).  

 

 

Figure 1. Feed efficiency ratio of juvenile Nile tilapia fed diets with graded levels of β-

mannanase. Each dot triangle represents mean value of 21 fish as replicate aquarium. 

Orthogonal polynomials were used to evaluate quadratic responses to the levels of β-

mannanase. Means with asterisks superscripts differ significantly from control diet (β-

mannanase = 0 TMU kg−1 diet) by Dunnet´s test (P < 0.05). 

 

Based on Dunnet’s test, final body weight (P < 0.001) and body weight gain (P < 0.049) 

were significantly higher in fish fed 4800 and 6400 TMU kg–1 diet of β-mannanase than those 

fish fed control diet. Additionally, feed conversion ratio (P < 0.001), protein retention efficiency 

(P < 0.001), and energy retention efficiency (P < 0.001) were significantly higher in fish β-

mannanase-supplemented diets than fish fed control diet. There were no significant differences 

in hepatosomatic index, and the visceral fat ratio of fish fed experimental diets (P > 0.05), and 

no fish mortality was recorded during the feeding trial. 
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3.2. Whole-body composition 

The effects of β-mannanase supplementation on whole-body composition of juvenile 

Nile tilapia are presented in Table 5. Whole-body crude protein (P = 0.007), crude lipids (P < 

0.001), and ash (P = 0.008) contents increased linearly with increasing levels of dietary β-

mannanase.
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Table 5. Whole-body composition (g kg−1) of juvenile Nile tilapia fed the experimental diets1. 

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

 P-value  

     0 1600 3200 4800 6400 8000 L4 Q4 Dunnet5 

Moisture 73.38 73.11 72.86 73.31 72.06 73.28 0.123 0.330 0.331 0.110 

Crude protein 12.55 12.98 13.42* 13.18* 13.51 13.32 0.080 0.007 0.065 0.039 

Crude lipid 9.75 10.39 10.58* 10.41 10.61* 12.17* 0.126 <0.001 0.074 <0.001 

Ash 3.33 3.22 3.45 3.45 3.41 3.76 0.039 0.008 0.240 0.054 

Gross energy (MJ kg−1) 6.48 6.54 6.61 6.66 6.74 6.55 0.039 0.347 0.289 0.745 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1) by Dunnet´s test (P < 0.05).
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Additionally, Dunnet’s test showed significant increases in whole-body crude 

protein, and crude lipid in fish fed diets with 3200 to 8000 TMU kg–1 dietary β-mannanase 

than fish fed control diet. However, whole-body moisture and gross energy contents were 

not affected by adding different β-mannanase levels in the diet (P > 0.05). 

3.3. Activity of digestive enzymes 

The effects of dietary β-mannanase on the activity of digestive enzymes of Nile 

tilapia juveniles are summarized in Table 6. The amylase activity increased linearly (P < 

0.001) according to increasing β-mannanase levels in the diets. 
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Table 6. Digestive enzymes in the gut of juvenile Nile tilapia fed the experimental diets1. 

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4 Dunnet5 

Amylase (µm g−1) 20.72 25.52* 33.86* 33.40* 40.41* 43.82* 1.356 <0.001 0.152 <0.001 

Protease (µm g−1) 26.94 28.83* 33.44* 33.79* 33.61* 33.85* 0.525 <0.001 <0.001 <0.001 

Lipase (µm g−1) 3.25 3.78* 4.37* 4.80* 4.42* 3.90* 0.091 0.009 <0.001 <0.001 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1) by Dunnet´s test (P < 0.05).
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Differently, protease (P < 0.001; R2 = 0.908; Ymax. = 6320 TMU kg–1 β-mannanase) and 

lipase (P < 0.001; R2 = 0.861; Ymin. = 4800 TMU kg–1 β-mannanase) activity tended to increase 

in a quadratic manner (P < 0.001) according to graded β-mannanase levels. According to 

Dunnet’s test, the addition of β-mannanase promoted higher activity (P < 0.001) of digestive 

enzymes compared to fish fed control diet. 

3.4. Blood parameters  

The effects of dietary β-mannanase on blood parameters of juvenile Nile tilapia are 

shown in Table 7. Alanine aminotransferase activity (P < 0.001; R2 = 0.763; Ymax. = 4720 TMU 

kg–1 β-mannanase) and triglycerides contents (P < 0.001; R2 = 0.438; Ymin. = 4480 TMU kg–1 

β-mannanase), tended to decrease in a quadratic manner (P < 0.001) according to dietary β-

mannanase increased in the diet. In contrast, blood glucose levels decreased linearly (P < 0.013) 

as dietary β-mannanase increased.
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Table 7. Blood parameters of juvenile Nile tilapia fed the experimental diets1. 

 

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4 Dunnet5 

Aspartate aminotransferase (IU L−1) 32.30 32.30 39.29 36.09 33.18 37.98 1.345 0.452 0.705 0.817 

Alanine aminotransferase (IU L−1) 65.60 54.24 22.88* 28.09* 34.65* 47.30* 2.796 0.031 <0.001 <0.001 

Triglycerides (mg dl−1) 222.59 242.45 308.65* 311.09* 319.32* 230.47 9.154 0.263 0.001 0.010 

Glucose (mg dl−1) 62.77 65.49 58.02 57.66 57.47 50.96 1.364 0.013 0.625 0.194 

Total protein (g dl−1) 2.42 2.27 1.94 2.35 2.31 2.30 0.056 0.951 0.333 0.653 

Cholesterol (mg dl−1) 118.38 105.56 108.53 117.02 121.01 118.50 2.487 0.459 0.502 0.806 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1) by Dunnet´s test (P < 0.05).
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Based on Dunnet’s test, alanine aminotransferase activity was significantly lower (P < 

0.001) in fish fed diets with 3200 to 8000 TMU kg–1 dietary β-mannanase than fish fed control 

diet. In addition, blood triglycerides were significantly (P < 0.010) higher in fish fed diets with 

3200 to 6400 TMU kg–1 dietary β-mannanase than fish fed control diet. Nevertheless, there 

were no significant differences (P > 0.05) in aspartate aminotransferase, total protein, and 

cholesterol content in plasma. 

3.5. Short chain fatty acids, viscosity, and pH of feces 

The effects of dietary β-mannanase addition on gut SCFAs production, pH, and 

viscosity values are shown in Table 8. Gut acetic acid (P < 0.001; R2 = 0.593; Ymax. = 4160 

TMU kg–1 β-mannanase diet), propionic acid (P < 0.001; R2 = 0.637; Ymax. = 2880 TMU kg–1 

β-mannanase) and butyric acid ( P < 0.001; R2 = 0.632; Ymax. = 3920 TMU kg–1 β-mannanase), 

increased in a quadratic manner with the inclusion of increasing levels of dietary β-mannanase. 

However, the gut viscosity and pH decreased linearly (P < 0.001) as the β-mannanase 

supplementation increased in the diet.
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Table 8. Short-chain fatty acids, digesta viscosity and pH of juvenile Nile tilapia fed the experimental diets1. 

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4 Dunnet5 

Acetic acid 11.62 12.61 13.61* 14.43* 13.20 11.53 0.229 0.705 <0.001 <0.001 

Propionic acid 0.97 0.92 1.03 1.03 0.88 0.57* 0.030 0.005 <0.001 <0.001 

Butyric acid 0.49 0.69* 0.78* 0.80* 0.58 0.51 0.025 0.727 <0.001 <0.001 

Viscosity (cP) 3.41 2.89* 2.89* 2.53* 2.17* 1.76* 0.095 <0.001 0.178 <0.001 

pH  7.93 7.38* 7.29* 7.28* 7.28* 7.25* 0.040 <0.001 0.001 <0.001 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1) by Dunnet´s test (P < 0.05).
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Based on Dunnet’s test, acetic acid content (P < 0.001) was higher in fish fed diets 

with 4800 and 6400 TMU kg–1 diet of β-mannanase compared to fish fed control diet, whereas 

the propionic acid production (P < 0.001) was higher in the fish fed diet with 8000 TMU kg–1 

diet of β-mannanase than fish fed control diet. The butyric acid production (P < 0.001) was 

higher in fish fed diets with 1600, 3200, and 4800 TMU kg–1 diet of β-mannanase than fish fed 

control diet. The viscosity (P < 0.001) and digesta pH (P < 0.001) was lower in fish fed β-

mannanase supplemented diet relative to that fed control diet. 

3.6. Gut morphometry 

The effects of dietary β-mannanase on gut morphometry are shown in Table 9. The total 

villus height (P = 0.003; R2 = 0.495; Ymin. = 5040 TMU kg–1 β-mannanase) and the villus width 

(P = 0.031; R2 = 0.239; Ymin. = 4560 TMU kg–1 β-mannanase) increased in a quadratic manner 

in fish fed graded levels of dietary β-mannanase.
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Table 9. Intestinal morphology of juvenile Nile tilapia fed the experimental diets1. 

 

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4 Dunnet5 

Total villus height (µm) 341.4 368.7 474.7* 479.4* 615.5* 383.9 20.789 0.021 0.003 <0.001 

Villus width (µm) 138.3 143.2 158.0 167.5 168.1 140.7 4.612 0.320 0.031 0.194 

Villus height: villus width 2.5 2.6 3.0 2.9 3.7* 2.8 0.106 0.038 0.101 0.011 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1) by Dunnet´s test (P < 0.05).
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However, the villus height:width ratio increased linearly (P = 0.038), with increased 

dietary levels of β-mannanase. According to Dunnet’s test, the total villus height was higher 

(P < 0.001) in fish fed diets with 3200 and 6400 TMU kg–1 diet of β-mannanase than fish fed 

control diet (Figure 2).  

 

 

Figure 2. Villus height (VH), villus width (VW), and villus:width relation (VWR) of the 

medium intestine wall of juvenile Nile tilapia fed either diet control, not supplemented (control) 

or supplemented with β-mannanase 4800 TMU kg−1. Objective: 40×. Staining: Hematoxylin-

eosin. 

 

Additionally, the villus height:width ratio was higher (P = 0.011) in fish fed diet with 

6400 TMU kg–1 of dietary β-mannanase than fish fed control diet. Notably, fish fed diet with 

6400 TMU kg–1 diet β-mannanase showed higher villus height with similar villus width, in 

which resulted in higher villus height:width ratio relative to fish fed control diet. 

3.7. Gut microbiota population characteristics 

The alpha diversity index showed higher (P < 0.05) bacterial diversity in fish fed the 

β-mannanase supplemented diets. The taxonomic composition of bacterial communities at the 

phylum level is presented in Figure 3.  
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Figure 3. General view of the taxonomic composition of the bacterial community of juvenile 

Nile tilapia fed diets with graded levels of β-mannanase at the phylum level using a stacked 

plot. Data represent the means of four replicate cages of 21 fish each. 

 

A clear grouping of samples by principal component analysis (PCA) was observed, 

suggesting differentiation of the bacterial communities due to the dietary treatments. Principal 

component analysis shows that the PC1 axis represents 81.9% of the observed microbiota 

modulation responses, primarily represented by dietary β-mannanase levels of 3200, 4800 and, 

6400 TMU kg–1, composed of the phyla Firmicutes, Bacteroidetes and, Actinobacteria (Figure 

4A). Figure 4B shows that fish fed diets without and with 1600 and 8000 TMU kg–1 dietary β-

mannanase are negatively correlated with the microbiota of fish that received 3200 to 6400 

TMU kg–1 dietary β-mannanase, being mainly represented by phylum Fusobacteria and 

Proteobacteria. 
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Figure 4. Principal component analysis (PCA) of the phylum of the gut bacterial communities 

of Nile tilapia diets with graded levels of β-mannanase. The figure was constructed using the 

Bray-Curtis distance method and represents the phylogenetic distance between samples, a 

summary of the bacterial composition. Each point represents the mean of entire microbiota of 

four replicate aquaria. Distant points indicate more different microbiota. 

 

Figure 5 shows a box plot of the individual components of the significant phyla 

Actinobacteria, Proteobacteria, Firmicutes, Bacteroidete and Fusobacteria identified in the gut 

microbiome of juvenile Nile tilapia fed graded dietary β-mannanase levels.  
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Figure 5. Box plot comparing the differences between the main phylum observed in the gut of 

juvenile Nile tilapia fed diets with graded levels of β-mannanase. (A) Proteobacteria; (B) 

Fusobacteria; (C) Bacteroidetes; (D) Firmicutes; (E) Actinobacteria; (F) Others phylum. The 

black lozenge dot on the boxplot’s right side indicate each treatment’s mean values, while the 

boxplots show the lower, median, and upper quartiles. Means not sharing a common letter 

differs significantly by Kruskall-Wallis test complemented by Shapiro-Wilk test (P < 0.05).  

 

Analyzing each phylum individually, Proteobacteria was higher in fish fed control 

diet, and 1600, 3200, and 8000 TMU kg–1 dietary β-mannanase, which significantly (P < 0.05) 

differed from fish fed diets with 4800 and 6400 TMU kg–1 dietary β-mannanase. The 

Bacteroidete phylum was significantly (P < 0.05) higher in fish fed diet with 4800 TMU kg−1 

dietary β-mannanase than those fed other diets. For the Firmicutes phylum, fish fed 6400 TMU 

kg–1 β-mannanase showed a significant (P < 0.05) increase relative to that fed diet control. The 

Actinobacteria phylum was significantly (P < 0.05) higher in fish fed diet with 4800 TMU kg–

1 treatment compared to those fed diet control and diets with 1600, 3200, and 8000 TMU kg–1 

of β-mannanase. Fish fed the diet containing 4800 TMU kg–1 of β-mannanase showed a higher 

diversity (P < 0.05) of phyla than fish fed diet control. The top twenty bacterial genera 

abundance of juvenile Nile tilapia fed diets with graded levels of β-mannanase are presented in 

Table 10. 
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Table 10. Top 20 bacterial genera abundance of juvenile Nile tilapia fed the experimental diets1. 

1 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
a-b Mean values with different superscripts lowercase letters in the same row indicate significant differences by Welch-test.  

 

Genus 
β-mannanase 1 (TMU kg−1 diet)  

0 1600 3200 4800 6400 8000 P-value 

Cetobacterium 13.35±1.63 26.14±1.43 16.42±2.00 28.22±3.10 32.24±2.65 23.54±1.24 0.879 

Novosphingobium 50.87±2.08a 29.21±1.60ab 6.13±0.67b 3.72±0.23b 5.02±0.41b 32.38±2.17ab 0.003 

Pelomonas 2.67±0.38 5.39±0.71 0.55±0.08 1.23±0.20 1.37±0.20 0.00±0.00 0.471 

Phocaeicola 1.19±0.18 0.17±0.01 0.12±0.01 0.10±0.01 1.78±0.10 1.56±0.27 0.469 

Alistipes 0.05±0.01 2.56±0.25 0.85±0.08 0.23±0.03 0.53±0.02 0.13±0.01 0.075 

Escherichia 0.88±0.05a 0.17±0.01bc 0.04±0.01c 0.05±0.01c 0.11±0.01bc 0.82±0.05ac 0.002 

Lactobacillus 0.06±0.00 0.16±0.01 0.34±0.02 0.53±0.06 0.52±0.03 0.29±0.03 0.440 

Streptococcus 0.25±0.02b 0.21±0.02b 0.00±0.00b 0.00±0.00b 0.11±0.01b 1.29±0.08a 0.001 

Rhodopseudomonas 0.42±0.06 0.53±0.05 0.06±0.01 0.08±0.01 0.08±0.01 0.35±0.02 0.390 

Leucobacter 0.24±0.02 0.33±0.04 0.08±0.00 0.37±0.06 0.05±0.01 0.30±0.05 0.815 

Mediterraneibacter 0.24±0.04 0.00±0.00 0.01±0.00 0.00±0.00 0.72±0.10 0.40±0.07 0.576 

Clostridium 0.22±0.01 0.17±0.01 0.04±0.00 0.01±0.00 0.06±0.00 0.82±0.10 0.160 

Bifidobacterium  0.01±0.00b 0.02±0.00b 0.10±0.01b 1.43±0.22ab 1.66±0.09a 0.99±0.01ab 0.007 

Flavobacterium 0.00±0.00 0.01±0.00 1.25±0.17 0.00±0.00 0.00±0.00 0.00±0.00 0.163 

Staphylococcus 0.50±0.05 0.23±0.03 0.05±0.01 0.02±0.00 0.26±0.03 0.03±0.00 0.273 

Prevotella 0.19±0.02 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.86±0.14 0.424 

Comamonas 0.27±0.02 0.38±0.02 0.32±0.05 0.01±0.00 0.02±0.00 0.05±0.01 0.302 

Coprenecus 0.29±0.04 0.11±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.53±0.09 0.556 

Bosea 0.26±0.02 0.25±0.02 0.01±0.00 0.15±0.02 0.07±0.01 0.09±0.01 0.472 

Lactococcus 0.02±0.00 0.03±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.77±0.14 0.462 
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The occurrence of Novosphingobium bacteria genera was lower (P = 0.003) in fish fed 1 

diets 3200, 4800 and 6400 TMU kg–1 of β-mannanase, differing from fish fed control diet. 2 

Conversely, the abundance of Escherichia bacteria was higher (P = 0.002) in fish fed the control 3 

diet compared to those fed diets containing 1600, 3200, 4800, and 6400 TMU kg–1 β-4 

mannanase. Additionally, the abundance of Streptococcus bacteria in fish fed 8000 TMU kg–1 5 

β-mannanase was higher (P = 0.001) than in those fed other diets containing β-mannanase. The 6 

abundance of Bifidobacterium was lower (P = 0.007) in fish fed diets control; 1600 and 3200 7 

TMU kg–1 of β-mannanase, differing only from fish fed 6400 TMU kg–1 of dietary β-8 

mannanase. 9 

4. Discussion 10 

The study confirms that β-mannanase supplementation improved growth performance 11 

of Nile tilapia fed diets with 3200 to 4800 TMU kg–1 β-mannanase. Notably, body weight gain, 12 

feed efficiency ratio, protein retention, and energy retention efficiency. These results are 13 

consistent with emerging studies on β-mannanase effects on growth performance in various fish 14 

species (Chen et al., 2016; Dawood and Shi, 2022; Sallam et al., 2020). Together, these findings 15 

support the theory that dietary β-mannanase improves growth performance by reducing digesta 16 

viscosity and thereby increasing the activity of digestive enzymes. 17 

The present study found that β-mannanase regulated plasma levels of alanine 18 

aminotransferase (ALT), glucose, and triglycerides in Nile tilapia, which is in line with previous 19 

studies reporting reduced liver damage with β-mannanase in the diet (Chen et al., 2016; Dawood 20 

and Shi, 2022; Sallam et al., 2020). High ALT activity reflects abnormal liver function and 21 

stress in fish (Wu et al., 2017). This may be due to the greater release of energy and improved 22 

access to enzymes and substrates provided by β-mannanase, leading to more nutrients being 23 

absorbed (Chen et al., 2016; Sallam et al., 2020).  24 
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Concerning plasmatic glucose levels, the study found that increasing levels of β-25 

mannanase in diets led to a linear reduction in plasma glucose levels. However, this is not 26 

consistent with previous research, which showed increased plasma glucose levels with the 27 

inclusion of β-mannanase in the diet. Glucose levels are related to reduced due intestinal 28 

viscosity; however, contrary to this, with increasing β-mannanase levels in diets, we observed 29 

a linear decrease in viscosity and plasma glucose levels (El-dakar et al., 2022). In light of such 30 

findings, our research casts a new light on the availability of nutrients such as glucose once we 31 

can consider an overview of a series of factors capable of influencing the absorption and serum 32 

levels of glucose in fish fed with increasing levels of β-mannanase. The first approach is 33 

evaluating the effects of β-mannanase on the production of SCFAs and their effects on glucose 34 

metabolism (He et al., 2020; Koh et al., 2016). The SCFA can activate FFAR3, stimulating the 35 

secretion of intestinal hormones related to glucose regulation, such as PYY in endocrine cells, 36 

increasing glucose absorption in muscle and adipose tissue, also causing satiety and 37 

consumption reduction, corroborating the performance data in this experiment (Ribola et al., 38 

2017). Furthermore, SCFA activates FFAR2, which stimulates glucagon-like peptide-1 39 

secretion, indirectly regulating blood glucose levels, increasing insulin secretion, and reducing 40 

pancreatic glucagon secretion (Barrera et al., 2011; Fujikawa et al., 2013). Activation of FFAR2 41 

by SCFA also increases leptin secretion, which regulates insulin and glucagon levels, regulating 42 

consumption, weight gain, and energy metabolism (He et al., 2020; Mazibuko et al., 2013; 43 

Ribola et al., 2017). Therefore, it can be considered that the decreasing linear levels observed 44 

in this experiment are because β-mannanase anticipates glucose absorption peaks. Since blood 45 

plasma collections were performed staggered in the present study, so that all samples were 46 

collected 4 hours after feeding, it would not be possible to evaluate the time course of glucose 47 

absorption with distinct levels of β-mannanase in juvenile Nile tilapia. It suggests that further 48 

research is needed to clarify this mechanism.  49 
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Our results suggest that dietary β-mannanase increases energy retention in fish. This 50 

is supported by improvements in whole-body crude lipids and plasmatic triglycerides contents 51 

in fish fed β-mannanase-contained diets. These findings are in accordance with previous studies 52 

with several species, including spinefoot rabbitfish (Siganus rivulatus), rainbow trout 53 

(Oncorhynchus mykiss), hybrid tilapia (Oreochromis sp.), Nile tilapia, and common carp 54 

(Cyprinus carpio), which have also shown a positive association between dietary β-mannanase 55 

and triglycerides and whole-body crude lipid modulation (Dawood and Shi, 2022; El-Dakar et 56 

al., 2022; Sallam et al., 2020; Taj et al., 2020; Yilmaz et al., 2007). β-mannanase reduced 57 

digesta viscosity, which allows better access of digestive enzymes to nutrients, thereby 58 

improves digestibility of nutrients and growth performance of fish (Amirkolaie et al., 2005; 59 

Kiarie et al., 2021; Leenhouwers et al., 2007b, 2006; Tran-Tu et al., 2018). Together, these 60 

findings could explain the higher whole-body crude protein, lipid, and ash in Nile tilapia 61 

juveniles. Such data are strongly related to β-mannanase action by breaking the NSPs bonds in 62 

the ingredients. As a result, such nutrients, including carbohydrates, are more available in the 63 

intestine to be fermented by the microbiota, producing SCFAs in the gut. 64 

In the present study, dietary β-mannanase affected the production of SCFAs, 65 

increasing acetic, propionic, and butyric acid levels. The most important means of SCFAs 66 

synthesis is endogenous fermentation of carbohydrates in the gut by microbiota present in the 67 

intestine (Tran et al., 2020). The profile of SCFAs is mainly dictated by the composition of the 68 

carbohydrates that will be fermented by bacterial gut and that will also retro-influence the 69 

activity of the microbiota (Flint et al., 2014; Ríos-Covián et al., 2016). The main effects 70 

observed with SCFAs include, but are not limited to: improvements in growth performance, 71 

feed efficiency, immune response, survival rate, microbiota modulation, and improvements in 72 

intestinal morphology (Ebrahimi et al., 2017; Estensoro et al., 2016; Rimoldi et al., 2018; 73 

Robles et al., 2013; Tian et al., 2017). Our research shows that β-mannanase directly influences 74 
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SCFAs production once acetic, propionic, and butyric acid increase in response to increasing 75 

dietary β-mannanase. As each SCFA has a different function in the organism, such differences 76 

must be observed following the results found in this study. SCFAs are mainly used in the 77 

vicinity of the intestine itself, once, butyric acid is mainly (99 %) used for increasing epithelial 78 

barrier and permeability of intestinal cells through the modulation of proteins of the junctions 79 

between intestinal cells, protecting intestinal mucosa and increasing villus density, being solely 80 

responsible for improvements in gut health (Canfora et al., 2015; Piazzon et al., 2017). SCFA 81 

production influences intestinal morphology and pH; thus, intestinal pH fall is the main change 82 

expected with NSPs digestion (Tran et al., 2020). Lower pH is responsible for modulating the 83 

microbiota and reducing pathogenic organisms, as it can dissociate into gram-negative bacteria, 84 

which are primarily related to diseases (MacFarlane and Macfarlane, 2012). 85 

The results showed that β-mannanase significantly impacted the intestinal microbiota 86 

composition, with a predominance of Actinobacteria, Firmicutes, Bacteroidetes, 87 

Proteobacteria, and Fusobacteria phyla in the gut of juvenile Nile tilapia. Proteobacteria and 88 

Fusobacteria are abundantly found in fish guts, and their association with carbohydrases was 89 

previously reported (Egerton et al., 2018; Maas et al., 2020a). The phylum Proteobacteria is of 90 

high abundance in aquatic environments, which helps to explain the high prevalence of this 91 

phylum in the gastrointestinal tract of many fish species, besides, is capable of degrading fiber. 92 

(Rawls et al., 2006). Fusobacteria are also anaerobic, gram-negative bacilli, and include 93 

pathogenic strains (Pelczar et al., 1996). The Firmicutes phylum has been reported to positively 94 

impact the energy availability of fibrous feeds, leading to growth of Actinobacteria which can 95 

enhance secretion of NSP-degrading enzymes (Watanabe et al., 2021). Furthermore, Firmicutes 96 

are associated with increased body weight and feed efficiency in pigs (Huang et al., 2018). 97 

Actinobacteria is a major taxonomic phylum among the 18 main lineages, known for its 98 

production of extracellular enzymes and secondary metabolites (Ventura et al., 2007). 99 
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Bacteroidetes in humans have a direct relationship with mannan utilization (Cuskin et al., 2015) 100 

and possess PULs, which encode the necessary apparatus for utilizing complex carbohydrates, 101 

specifically mannosidosis bonds(Martens et al., 2009). The addition of β-mannanase 102 

significantly increased the presence of the Bifidobacterium genus, which tends to increase in 103 

response to dietary fiber and has several beneficial effects in fish, including production of 104 

bacteriocins that reduce pathogenic (Abudabos et al., 2017; de Figueiredo et al., 2020). Our 105 

results further show that β-mannanase reduces the presence of pathogenic genera, such as 106 

Streptococcus and Escherichia, known to cause diseases in swine, poultry, and fish (Petry et 107 

al., 2021; Wang et al., 2021). However, whether β-mannanase can stimulate the beneficial 108 

bacteria and reduce the presence of potentially pathogenic bacteria in the gut of Nile tilapia is 109 

mainly due the pH reduction retroinfluenced by the effects of SCFAs in pH (Wang et al., 2021).  110 

Overall, our study demonstrates the positive effects of β-mannanase supplementation 111 

on nutrient digestion and growth performance of juvenile Nile tilapia. β-mannanase also 112 

modulated the composition of the fish's gut microbiota by reducing pathogenic genera and 113 

increasing beneficial bacteria, as well as improved gut morphology by increasing villus height 114 

and width. The results further indicate that β-mannanase enhances the nutritive value of plant-115 

based diets in tilapia by reducing NSPs antinutritional effects and modulating the gut 116 

microbiome. The study provides novel evidence for the potential of β-mannanase 117 

supplementation to improve the sustainability of tilapia farming. 118 

5. Conclusions 119 

Our findings show that the inclusion of β-mannanase at 4800 TMU kg−1 diet reduced 120 

digesta viscosity, growth performance, increased digestive enzymes activity SCFA production, 121 

and improved gut morphometry. Additionally, β-mannanase positively modulated gut 122 

microbiome, by reducing deleterious bacteria, as Escheria sp., and increasing the levels of 123 
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beneficial bacterias. The current study provides novel evidence that using liquid carbohydrases 124 

in tilapia diets offer a promising solution to improve the nutritional value of alternative feed 125 

ingredients in tilapia aquaculture.  126 
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Article II - Effects of β-mannanase on fecal viscosity, digestibility of nutrients, and 405 

digestible energy and protein contents in soybean meal-rich diets fed to juvenile Nile 406 

tilapia 407 

ABSTRACT: This study aimed to evaluate graded levels of dietary β-mannanase 408 

supplementation on fecal viscosity and pH, and the apparent digestibility coefficient (ADC) of 409 

dry matter (DM), gross energy (GE), and nutrients, including amino acids (AAs), as well 410 

digestible energy (DE) and digestible protein (DP) contents of plant-based diets fed to juvenile 411 

Nile tilapia. Fish (n = 504; body weight 7.0 ± 0.43 g) were randomly distributed in 24 aquaria 412 

of 70 L each in a recirculation aquaculture system in a completely randomized design with six 413 

treatments and four replicates of 21 fish in each aquarium. Fish were fed diets with graded 414 

levels of β-mannanase at 0 (control), 1600, 3200, 4800, 6400, and 8000 TMU kg−1 diet and 415 

hand-fed 12 times a day until apparent satiety for eight weeks. Chromium oxide was used as an 416 

indigestible marker. Feces were collected manually by straining the feces through a sieve. Fish 417 

fed diet with β-mannanase at 4800 TMU kg−1 showed reduced fecal viscosity (−77.1%) and 418 

fecal pH (−11.1%), additionally, optimized the ADC of gross energy (+7.2%), crude protein 419 

(+3.5%), crude lipid (+1.2%), ash (+19.7%), essential amino acid (+4.0%) and non-essential 420 

amino acid (+3.4%). Compared to the control group, fish fed diet with 4800 TMU kg−1 diet β-421 

mannanase displayed lower total nitrogen loss (TNL), organic matter loss (OML), inorganic 422 

matter loss (IML) and nitrogen loss (NL) of −34.2, −24.6, −9.6 and −2.3 g kg−1 of body weight 423 

gain (BWG) fish, respectively. Overall, it concluded that β-mannanase at level 4800 TMU kg−1 424 

diet improves the digestibility of energy, nutrients, including amino acids, by reducing digesta 425 

viscosity. This allows the fish to extract more nutrients from the feed, resulting in increased 426 

overall nutrient utilization and improved growth performance. Overall, the use of β-mannanase 427 

in tilapia feeds can lead to more efficient and cost-effective aquaculture operations. 428 
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Keywords: β-mannans, carbohydrase, Oreochromis niloticus, non-starch polysaccharides, 429 

sustentability 430 

 431 

1. Introduction 432 

Soybean meal (SBM) is widely used as a source of protein in aquafeeds, reducing the 433 

competition for food between aquaculture and human consumption (Tacon et al., 2022). 434 

However, SBM contains 17 to 27% of non-starch polysaccharides (NSPs) as high molecular 435 

weight carbohydrates that serve as the basis for the hardness of cell walls (Choct et al., 2010; 436 

Sinha et al., 2011). Therefore, viscous soluble non-starch polysaccharides in cereals and 437 

legumes limit their inclusion in fish feed (Kabir et al., 2020). Previous studies have shown that 438 

the viscosity of NSPs has adverse effects on nutrient utilization in Nile tilapia, Oreochromis 439 

niloticus (Haidar et al., 2016; Maas et al., 2018). Noteworthy, in typical non-dehulled SBM, β-440 

mannans account for 1.3 to 2.7% of insoluble NSPs fraction (Hsiao et al., 2006). Recent studies 441 

have demonstrated that β-mannans increase digesta viscosity and impair nutrient digestibility 442 

in African catfish, Clarias gariepinus (Leenhouwers et al., 2007b, 2006) and common carp, 443 

Cyprinus carpio (Dawood and Shi, 2022). However, the extent to which β-mannans negatively 444 

affect viscosity and nutrient digestibility, particularly for amino acids, remains unclear in Nile 445 

tilapia. 446 

Exogenous β-mannanase is an enzyme that targets β-mannans bonds, a dietary 447 

component in high-fiber feedstuffs such as SBM (Latham et al., 2018). Although β-mannanase 448 

can reduce the deleterious effects of β-mannans on growth performance of Nile tilapia (Chen 449 

et al., 2016). Despite that, the effects on nutrient digestibility are still conflicting in fish. While 450 

previous studies have reported that β-mannanase supplementation in diet of common carp, 451 

improved digestible energy content and nutrient digestibility coefficients (Dawood and Shi, 452 

2022). Conflicting literature reported no significant effects of β-mannanase inclusion on 453 
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nutrient digestibility in rainbow trout, Oncorhynchus mykiss fed SBM-rich diet (Yiǧit et al., 454 

2014). Along with fish species specificity, the inconsistent effects of β-mannanase on nutrient 455 

digestibility might be influenced by dietary β-mannans content in individual feedstuff 456 

composition, which governs digesta viscosity and, subsequently nutrient digestibility (Maas et 457 

al., 2020b). Collectively, these investigations indicate that β-mannanase could improve nutrient 458 

utilization of fish.  459 

Emerging research indicates that Nile tilapia are highly efficient in converting 460 

vegetable feed to food products (Ridha et al., 2020). However, a recent study revealed that Nile 461 

tilapia fed NSP-rich diets still produced substantial amounts of undigested nutrients and had 462 

negative impacts on the aquatic food (Kabir et al., 2020). Similar findings were reported in 463 

striped catfish, Pangasionodon hypophthalmus fed soybean meal-based diets, where dietary 464 

viscosity promoted by NSPs decreased digestibility and increased fecal waste production (Tu-465 

Tran et al., 2020). Besides, exogenous carbohydrase may be helpful to create environmentally 466 

sustainable diets for fish farming in compliance with sustainability principles (FAO, 2020). 467 

Furthermore, it may be useful as sustainability indicator of the aquaculture system (Valenti et 468 

al., 2018). However, the underlying mechanisms of β-mannanase’s impact on digesta viscosity 469 

and nutrient digestibility in Nile tilapia are not yet to be fully understood. Thus, the present 470 

study aims to investigate the effects of graded levels of dietary β-mannanase supplementation 471 

on feces viscosity, digestible energy and protein content, and digestibility of nutrients, including 472 

amino acids, in juvenile Nile tilapia fed SBM-rich diets. 473 

 474 

 475 

 476 

 477 

 478 
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2. Material and methods 479 

2.1. Ethics statement 480 

All fish procedures were performed following the Guidelines for Care and Use of 481 

Laboratory Animals and approved by the Animal Ethics Committee of the State University of 482 

Ponta Grossa (Protocol: 22.000024303-4). 483 

2.2. Diets 484 

A basal diet contained 311.2 g kg−1 of crude protein and 18.98 MJ kg−1 of gross energy, 485 

without β-mannanase supplementation (control) was formulated based on soybean meal, broken 486 

rice, wheat bran, corn, and poultry by-product meal as primary food ingredients, and formulated 487 

to meet the dietary requirements of Nile tilapia (NRC, 2011). From the basal diet, five other 488 

diets were elaborated by supplementing 1600, 3200, 4800, 6400 and 8000 TMU kg−1 diet of β-489 

mannanase. Exogenous β-mannanase enzyme inclusion replaced an equal silica amount, as 490 

shown in Tables 1 and 2. 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 
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Table 1. Ingredients composition of the reference diet (g kg−1 diet). 501 

Ingredient g kg−1 (as-fed basis) 

Broken ricea 80 

Soybean mealb 440 

Poultry by-product mealc 150 

Wheat branb 100 

Cornb 165 

Soybean oild 20 

Corn starche 20 

ᴅʟ-methionine 99f 2 

ʟ-lysinef 3 

Dicalcium phosphateg 10 

Mineral and vitamin mixh 8 

Inert (Silica)i 1 

Cr2O3
j 1 

a Armazém São Vito, São Paulo, SP, Brazil.  502 
b Bunge, Ponta Grossa, PR, Brazil. 503 
c BRF, Toledo, PR, Brazil. 504 
d Coamo, PR, Brazil. 505 
e Yoki, São Bernardo do Campo, São Paulo, Brazil. 506 
f Ajinomoto Animal Nutrition Division, SP, Brazil. 507 
g Sarfos, Goiás, Brazil. 508 
h Customized premix (Composition per kilogram of feed (IU or mg kg−1 of diet): Vitamin A 509 
(retinyl acetate), 6,000 IU; vitamin D3, (cholecalciferol), 1,000 IU; vitamin E (ᴅʟ-α-tocopheryl 510 

acetate), 60 mg; vitamin K3 (menadione Na-bisulphate), 12 mg; vitamin B1 (thiamine HCl), 511 
24 mg; vitamin B2 (riboflavin), 24 mg; vitamin B6 (pyridoxine HCl), 20 mg; vitamin B12 512 

(cyanocobalamin), 0.05 mg; folic acid, 6 mg; ᴅ-calcium pantothenate, 60 mg; ascorbic acid 513 
(ascorbyl polyphosphate), 350 mg; ᴅ-biotin, 0.24 mg; choline chloride, 800 mg; niacin, 120 514 
mg; ferrous sulfate (FeSO4.H2O.7H2O), 50 mg; copper sulphate (CuSO4.7H2O), 3 mg; 515 

manganese sulphate (MnSO4.H2O), 20 mg; zinc sulphate (ZnSO4.7H2O), 30 mg; potassium 516 
iodide (KI), 0.4 mg, cobalt sulphate (CoSO4.4H2O), 0.25 mg; sodium selenite (Na2SeO3), = 517 

0.1 mg, BHT, 200 mg; calcium propionate, 1000mg. 518 
i Merck Company, Germany. 519 
j Sygma-Aldrich Brazil Ltda, 99.5%, São Paulo, SP, Brazil.  520 
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All diets were ground through a 0.8-mm screen in a centrifugal mill (Viera MC 680B, 521 

Tatuí, SP, Brazil). The extrusion process was performed through a 1.5-mm die diameter in a 522 

single screen extruder with die temperature set at 92°C (Exteec EX30, Ribeirão Preto, SP, 523 

Brazil), obtaining pellets with 2.5-mm of diameter and floatability rate higher than 99%. After 524 

that, the pellets were dried in a drying drum with rotary drier at 55ºC (pellet temperature) for 525 

10 min (Model E-62, Ferraz Máquinas e Engenharia LTDA, Ribeirão Preto, SP, Brazil). 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 
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Table 2. Analyzed composition of the basal diet (g kg−1 dry matter basis). 547 

Composition g kg−1  

Dry matter 932.1 

Gross energy (MJ kg−1) 18.98 

Crude protein 311.2 

Crude fiber 38.24 

Crude lipid 31.40 

Ash 64.3 

Amino acid  

Essential amino acid  

Arginine 1.910 

Histidine 0.811 

Isoleucine 1.149 

Leucine 2.536 

Lysine 1.796 

Methionine 0.582 

Phenylalanine 1.620 

Threonine 1.409 

Tryptophan 0.366 

Valine 1.687 

Non-essential amino acid  

Alanine 1.722 

Aspartic acid 2.829 

Cysteine 0.511 

Glutamic acid 4.756 

Glycine 1.892 

Proline 0.000 

Serine 1.807 

Tyrosine 0.944 

 548 

Liquid β-mannanase (Natupulse® TS, BASF, Ludwigshafen am Rhein, Germany; 549 

8000 TMU g−1)was top-sprayed onto each kilogram of diet to supply 1600; 3200; 4800; 6400, 550 
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and 8000 TMU kg−1 diet of endo-1,4-β-mannanase, being applied 0.2; 0.4; 0.6; 0.8 and 1.0 g 551 

kg−1 of Natupulse . The same procedure was applied to unsupplemented diet to receive the same 552 

treatment, but without the commercial β-mannanase inclusion in soybean oil.  553 

2.3. Fish and Experimental Design 554 

The experiment was conducted at the Aquaculture Laboratory of the State University 555 

of Ponta Grossa, Ponta Grossa, PR, Brazil. All-male masculinized Nile tilapia juveniles (n = 556 

1500; 3.0 ± 0.5 g; Premium strain) were obtained from Aquabel Fish Farm (Rolândia, PR, 557 

Brazil). Fish were acclimated for a 4-week period in a circular tank (500 L), with temperature 558 

and dissolved oxygen set at 28°C and 6 mg L−1, respectively. Fish were hand-fed a commercial 559 

extruded diet (Supra, 1.0 mm Ø; Alisul Alimentos, Maringá, PR, Brazil), with 460 g kg−1 of 560 

crude protein, six times daily for 21 days. Afterward, fish (n = 504; 7.0 ± 0.43 g; mean ± SD) 561 

were grouped-weighed and randomly distributed into 24 plastic aquaria (70 L each) equipped 562 

with a recirculating system composed of a decanter to remove solids, a mechanical filter with 563 

bio-balls, heater (3000W) and a central UV-light disinfection system (55W). The aeration 564 

system was comprised of a centrifugal 0.5-HP blower (Sulpesca, Toledo, PR, Brazil) fitted with 565 

silicone airline tubing, with a porous stone in each experimental aquarium. Each aquarium was 566 

siphoned daily to maintain 10% of the water volume and remove fish metabolites. Temperature 567 

was set at 28 ± 0.5°C, dissolved oxygen was kept at 6.2 ± 0.2 mg L−1, and water flow was kept 568 

at 1.2 L min−1 per aquarium throughout the trial. Data of individual aquarium temperature and 569 

dissolved oxygen were monitored daily using YSI Multi-Parameter Water Quality Meter (YSI 570 

Incorporated, Ohio, USA). Water quality parameters were monitored weekly with a pH-meter 571 

(TEC-2, Piracicaba, SP, Brazil) and kept at 7.0 using calcium carbonate and phosphoric acid; 572 

ammonia, nitrite, and nitrate analysis were performed using commercial kits (Alfakit, 573 
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Florianópolis, SC, Brazil), and were kept at 0.01; 0.02 and 0.01 mg L−1, respectively. Fish were 574 

hand-fed from 8:00 to 18:00 h, 12 times daily, until apparent satiety for 60 days. 575 

2.4. Chemical composition 576 

The proximate composition of diets and feces samples was performed according to 577 

standard methods of the Association of Official Analytical Chemists (AOAC, 2002). Moisture 578 

analysis was determined by oven-drying at 105°C until constant weight and crude lipid by the 579 

ether-extraction method (Folch, 1957). Crude protein (N × 6.25) analysis was performed using 580 

the macro Kjeldahl method (Tecnal, MA-036, Piracicaba, SP, Brazil) after acid hydrolysis. The 581 

analysis of ash was achieved by overnight combustion in a muffle furnace at 550°C (Tecnal, 582 

2000B, Belo Horizonte, MG, Brazil). The crude fiber analysis was performed according to loss 583 

on ignition of dried lipid-free residues following digestion with 1.25% H2SO4 and 1.25% 584 

NaOH. Chromium analysis was performed by inductively coupled plasma optical emissions 585 

spectrometry using an internally validated method of analysis (AOAC, 1990). Gross energy of 586 

diets and feces was carried out by adiabatic bomb calorimeter (Parr 6400; Parr Instruments Co., 587 

Moline, IL, USA), using benzoic acid as a calibration standard The profile of dietary amino 588 

acids and amino acids in feces were determined by High Performance Liquid Chromatography 589 

(HPCL) (Hitachi, Tokyo, Japan), at the Laboratory of Ajinomoto do Brasil Indústria e Comércio 590 

de Alimentos Ltda, Division of Animal Nutrition (São Paulo, SP, Brazil) (Rayner, 1985). 591 

Tryptophan was determined after alkaline hydroxylation of the sample with lithium hydroxide. 592 

2.5. Digestibility measurements 593 

The apparent digestibility coefficients (ADC) of gross energy and nutrients were 594 

measured using chromic oxide (Cr2O3) as an external inert marker (Guimarães et al., 2008). 595 

After one-month of the feeding trial, feces were collected from each aquarium twice daily in 596 
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the morning (08:30 h) and in the afternoon (18:30 h) until the last day before the end of the 597 

experimental trial. All aquaria were cleaned daily before the feces collection. The collection 598 

was done manually by siphoning the fecal matter and straining through a 1-mm meshed net. 599 

For this, the laboratory lighting system was turned off to prevent excessive fish movement, and 600 

the fecal collection followed a single handheld flashlight light. After the centrifugation cycle, 601 

the supernatant was discarded, and the solid sediment was dried in a ventilated oven at 55◦C for 602 

24 h. Thus, the feces sample was fine-grinded (0.5-mm diameter) in a laboratory willye mill 603 

(Tecnal R-TE 648, Piracicaba, SP, Brazil) and stored at −20◦C until analysis. The ADC was 604 

calculated following previously established expression (Forster, 1999; NRC, 2011) as ADC = 605 

1 − [(Cd/Cf) × (Nf/Nd), where ADC is the apparent digestibility coefficients; Cd is the 606 

concentration of chromium oxide in the diet; Cf is the concentration of chromium oxide in the 607 

feces (g kg−1 DM); Nf is the concentration of nutrient or energy in the feces (g kg−1 or MJ kg−1 608 

DM); Nd is the concentration of nutrient or energy in the diet (g kg−1 or MJ kg−1 DM). The 609 

digestible energy (DE) and digestible protein (DP) contents were calculated as the product of 610 

gross energy and crude protein ADC of the diets. 611 

 612 

2.6. Fecal pH and viscosity 613 

Fecal pH was measured using a pH-meter (Kasvi – ATC-K39-0014PA, São José dos 614 

Pinhais, PR, Brazil), placed directly in the feces. The samples of feces were centrifuged at 615 

3000 rpm x g for 10 min (Kasvi – SKU K14-1215, São José dos Pinhais, PR, Brazil) to obtain 616 

the liquid phase. The supernatant obtained was placed in the viscometer (Brookfield Digital 617 

Viscometer, Model DV-II Version 2.0, Brookfield Engineering Laboratories Inc., Stoughton, 618 

MA), set at 28°C. The viscosity measurement was the average 50.0/s shear rate, and the 619 

viscosity values were recorded as apparent viscosity in centipoise (cP). 620 
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2.7. Fecal loss 621 

At the start and end of the feeding trial, all fish were fasted for 24 h, anesthetized with 622 

tricaine methanesulphonate (MS-222; Sigma‐Aldrich; 200 mg L−1), counted, and bulked weighed. 623 

The feed intake were daily recorded from each aquarium. The total nutrient loss (TNL), organic 624 

matter loss (OML), inorganic matter loss (IML) and nitrogen loss (NL) were determined as 625 

follows: 626 

TNL (g kg−1 of BWG fish) = FCR x DMD – [(FCR x DMD) x ADCDM] 627 

OML (g kg−1 of BWG fish) = TNL  – IML 628 

IML (g kg−1 of BWG fish) = FCR x MMD – [(FCR x MMD) x ADCMM] 629 

NL (g kg−1 of BWG fish) = FCR x ND – [(FCR x ND) x ADCN] 630 

TNL,  OML, IML, NL is total nutrient loss, organic matter loss, inorganic matter loss and nitrogen 631 

loss, respectively (g kg−1 of BWG of fish), FCR is feed conversion ratio, DMD, MMD, ND is dry 632 

matter, mineral matter and nitrogen content of diets (%),  and ADCDM, ADCMM, ADCN are 633 

apparent digestibility coefficient of dry matter, mineral matter and nitrogen, respectively (%).  634 

2.8. Statistical analysis 635 

All results were described as least square means and pooled standard error of means 636 

(SEM). All data were tested for normality using Kolmogorov–Smirnov test, and homogeneity 637 

was tested using Levene’s test. Data were analyzed as a two-way ANOVA using the General 638 

Linear Model (GLM) procedure. The dose-response effect of supplemental β-mannanase was 639 

determined using an orthogonal polynomial contrast for linear and quadratic effects (SAS, 640 

version 9.2). In addition, Dunnett’s test procedure was used to compare data from each β-641 

mannanase supplementation level with the non-supplemented diet (control). The Welch test (P 642 

< 0.05) was applied for microbiome analysis, followed by the Bonferroni correction test. The 643 

analyses were performed using the statistical metagenomics program STAMP for statistical 644 
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analysis of metagenomic profiles (Parks et al., 2014). The averages for biodiversity between 645 

treatments were compared using the number of observed OTUs and the Chao1 index by the 646 

Kruskal Wallis test (P < 0.05) once a non-parametric distribution was detected by the Shapiro-647 

Wilk test. Multivariate analysis was employed to conduct principal component (PC) analysis, 648 

and the score and loading plot were  utilized to ascertain the correlation among individual 649 

variables of the first two eigenvalues (PC 1 and 2). All data were analyzed according to the 650 

Proc GLM of the Statistical Analysis System (Version 9.0), and values were presented as mean 651 

± standard error. 652 

3. Results 653 

3.1. Fecal pH and viscosity 654 

The effects of dietary β-mannanase supplementation on fecal pH and viscosity of 655 

juvenile Nile tilapia are displayed in Figure 1. The pH tended to decrease in a quadratic pattern 656 

(P = 0.001; R2 = 0.856; Ymin. = 5840 TMU kg–1 diet β-mannanase), while the viscosity 657 

decreased linearly (P < 0.001). 658 
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 659 

Figure 1. Fitted orthogonal polynomial contrast for quadratic and linear plots of digesta pH (A; 660 
quadratic) and viscosity (B; linear) content as a function of the level of supplemented β-661 

mannanase on top of diets fed to juvenile Nile tilapia. Each dot point represents mean of each 662 
replicate of 21 fish. 663 
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Based on Dunnet’s test, fish fed diet with 1600 to 8000 TMU kg–1 β-mannanase 665 

showed lower fecal pH (P < 0.001) than fish fed diet control. Besides, β-mannanase promoted 666 

lower fecal viscosity (P < 0.001) in fish fed diets with 3200 to 8000 TMU kg–1 β-mannanase 667 

than those fish fed diets control and diet with 1600 TMU kg–1 β-mannanase. 668 

3.2. Digestibility of energy and nutrients 669 

The effects of graded levels of β-mannanase supplementation on ADC of dry matter, 670 

gross energy, and nutrients are shown in Table 3. The ADC of dry matter (P = 0.002; R2 = 671 

0.377; Ymax. = 3760 TMU kg–1 β-mannanase), gross energy (P < 0.001; R2 = 0.676; Ymax. = 672 

4160 TMU kg–1 β-mannanase), crude protein (P < 0.001; R2 = 0.848; Ymax. = 4080 TMU kg–1 673 

β-mannanase), crude lipid (P < 0.001; R2 = 0.767; Ymax. = 4000 TMU kg–1 β-mannanase), and 674 

ash (P < 0.001; R2 = 0.752; Ymax. = 5360 TMU kg–1 β-mannanase diet) increased in a quadratic 675 

manner in fish fed graded β-mannanase levels. 676 

 677 
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Table 3. Apparent digestibility coefficients (%) of juvenile Nile tilapia fed the experimental diets1. 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1 diet) by Dunnet´s test (P < 

0.05).

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

 SEM3 

P-value 

0 1600 3200 4800 6400 8000       L4       Q4    Dunnet5 

Dry matter 69.5 69.9 69.9 70.2* 70.1 69.6    0.082 0.626  0.002  0.041 

Gross energy 66.4 68.0 72.5* 71.2* 70.6* 66.7    0.554 0.484 <0.001 <0.001 

Crude protein 82.7 83.7* 86.2* 85.7* 85.0* 82.7    0.297 0.620 <0.001 <0.001 

Crude lipid 94.2 95.0* 95.4* 95.3* 95.0* 94.2    0.113 0.841 <0.001 <0.001 

Ash 57.2 62.9* 69.4* 68.5* 67.3* 63.6*    0.930 0.016 <0.001 <0.001 



103 
 

 

Based on Dunnet’s test, only fish fed diet with 4800 TMU kg–1 of β-mannanase 

showed higher ADC of dry matter (P < 0.041), while fish fed diets with 4800 and 6400 TMU 

kg–1 dietary β-mannanase revealed higher (P < 0.05) ADC of dry matter and gross energy, 

respectively, than fish fed diet control. Consistently, fish fed diets with 1600 to 6400 TMU kg–

1 β-mannanase demonstrated higher ADC of crude protein, crude lipids, and ash than fish fed 

diet control (P < 0.05).
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3.3. Fecal loss  

The effects of graded levels of β-mannanase supplementation on total nutrient loss, organic matter loss, inorganic matter loss and nitrogen 

loss are shown in Table 4. The total nutrient loss (P < 0.001; R2 = 0.377; 75.2; Ymin = 4896 TMU kg−1 diet β-mannanase), organic matter loss (P = 

0.001; R2 = 61.1; Ymin = 4755 TMU kg−1 diet β-mannanase), inorganic matter loss (P < 0.001; R2 = 92.3; Ymin = 4842 TMU kg−1 diet β-mannanase), 

nitrogen loss (P < 0.001; R2 = 0.767; R2 = 90,91; Ymin = 4528 TMU kg−1 diet β-mannanase) decresead in a quadratic manner in fish fed graded β-

mannanase levels. 

Table 4. Effect of graded levels of β-mannanase on the apparent digestibility coefficients of essential amino acids in juvenile Nile tilapia1. 

1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1 diet) by Dunnet´s test (P < 

0.05). 

Parameter 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4    Dunnet5 

Total nutrient loss 283.4 258.0* 253.5* 249.2* 244.7* 257.2* 2.891 0.001 <0.001 <0.001 

Organic matter loss 255.5 235.9* 235.6* 230.9* 226.1* 235.8* 2.304 0.003 0.001 <0.001 

Inorganic matter loss 27.9 22.1* 17.9* 18.3* 18.6* 21.4* 0.744 0.003 <0.001 <0.001 

Nitrogen loss 8.7 7.5* 6.2* 6.4* 6.6* 7.8* 0.191 0.082  <0.001 <0.001 
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Based on Dunnet’s test, fish fed diet with 1600 to 8000 TMU kg–1 of β-mannanase 

showed lower total nutrient loss (P < 0.01), organic matter loss (P < 0.01), inorganic matter 

loss (P < 0.01) and nitrogen loss dry matter (P < 0.01), respectively, than fish fed control diet.  

3.4. Digestibility of amino acids 

The effects of dietary β-mannanase on ADC of essential and non-essential amino acids 

are presented in Table 5, respectively. The ADC of essential amino acids (P < 0.001; R2 = 

0.682; Ymax. = 5120 TMU kg–1 β-mannanase), arginine (P < 0.001; R2 = 0.689; Ymax. = 4720 

TMU kg–1 β-mannanase), histidine (P < 0.001; R2 = 0.657; Ymax. = 5520 TMU kg–1 β-

mannanase), isoleucine (P = 0.001; R2 = 0.634; Ymax. = 5280 TMU kg–1 β-mannanase), leucine 

(P < 0.001; R2 = 0.625; Ymax. = 5360 TMU kg–1 β-mannanase), lysine (P = 0.001; R2 = 0.638; 

Ymax. = 5360 TMU kg–1 β-mannanase), methionine (P < 0.001; R2 = 0.753; Ymax. = 5200 TMU 

kg–1 β-mannanase), threonine (P = 0.003; R2 = 0.465; Ymax. = 4880 TMU kg–1 β-mannanase), 

tryptophan (P < 0.001; R2 = 0.525; Ymax. = 4080 TMU kg–1 β-mannanase) and valine (P = 0.004; 

R2 = 0.458; Ymax. = 4960 TMU kg–1 diet β-mannanase) showed a quadratic behavior. 

Conversely, the ADC of e phenylalanine increased linearly (P = 0.016) in fish fed graded levels 

of dietary β-mannanase.
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Table 5. Effect of graded levels of β-mannanase on the apparent digestibility coefficients of essential amino acids in juvenile Nile tilapia1. 

Amino acid 

β-mannanase 2 (TMU kg−1 diet) 

SEM3 

P-value 

0 1600 3200 4800 6400 8000 L4 Q4    Dunnet5 

Essential amino acid 85.2 88.6* 88.9* 88.6* 89.1* 88.5* 0.308 0.003 <0.001 <0.001 

Arginine 90.6 92.5* 92.8* 92.6* 92.9* 92.1* 0.185 0.022 <0.001 <0.001 

Histidine 87.5 90.9* 91.3* 90.8* 91.8* 91.3* 0.332 0.001 <0.001 <0.001 

Isoleucine 83.7 86.9* 87.8* 87.5* 87.9* 87.3* 0.364 0.003  0.001 <0.001 

Leucine 86.6 88.8* 89.2* 89.0* 89.6* 89.0* 0.244 0.001 <0.001 <0.001 

Lysine 89.1 91.4* 91.7* 91.7* 92.2* 91.6* 0.743 0.002  0.001 <0.001 

Methionine 81.8 90.7* 91.2* 90.7* 91.5* 90.6* 0.448 0.001 <0.001 <0.001 

Phenylalanine 84.2 87.5 88.2* 87.9* 88.7* 87.8* 0.311 0.016  0.017   0.028 

Threonine 81.4 85.2* 84.9* 84.4* 84.7* 84.4* 0.240 0.043  0.003 <0.001 

Tryptophan 85.9 87.8* 87.6* 87.5* 87.1* 86.5 0.168 0.816 <0.001   0.001 

Valine 81.2 84.4* 84.3* 84.2* 84.7* 83.8* 0.329 0.033  0.004   0.006 

Non-essential amino acid 81.9 85.1* 85.3* 84.8* 85.4* 85.4* 0.312 0.003 0.011 <0.001 

Alanine 82.1 85.0 83.8 82.7 82.6 83.9 0.321 0.905 0.676 0.073 

Aspartic acid 87.9 89.8* 90.0* 89.8* 90.0* 89.5* 0.194 0.030 0.001 0.001 

Cysteine 75.6 81.7* 81.7* 80.9* 82.2* 82.8* 0.628 0.002 0.048 0.001 

Glutamic acid 76.7 80.2* 81.0* 80.7* 81.6* 81.1* 0.416 0.001 0.005 0.001 

Glycine 93.1 94.1* 94.1* 93.9* 94.2* 94.1* 0.108 0.016 0.031 0.009 

Serine 75.6 79.1* 79.3* 78.9* 79.2* 78.9* 0.341 0.013 0.004 0.001 
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1 Values are means and standard error of the mean of four replicate cages of 21 fish each.  
2 Endo-1,4-β-mannanase (Natupulse TM®, 8000 TMU kg−1, BASF Corporation, Ludwigshafen, Germany). 
3 Pooled standard error of the means. 
4 Orthogonal polynomials were used to evaluate linear and quadratic responses to the levels of β-mannanase. 

5
 Means within a row with different superscripts differ significantly from Control diet (β-mannanase = 0 TMU kg−1 diet) by Dunnet´s test (P < 0.05 

 

Tyrosine 82.6 85.8 87.1 86.9 88.1* 87.6 0.568 0.005 0.077 0.050 
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Based on Dunnet´s test, the ADC of arginine (P < 0.001), histidine (P < 0.001), 

isoleucine (P < 0.001), leucine (P < 0.001), lysine (P < 0.001), methionine (P < 0.001), 

threonine (P < 0.001), tryptophan (P = 0.028), valine (P = 0.006) and mean of total essential 

amino acids (P < 0.001) were higher in fish fed diets with 1600 to 8000 TMU kg–1 β-mannanase 

than fish fed control diet. Differently, the ADC of phenylalanine was higher (P = 0.028) in fish 

fed diet with 3200 to 8000 TMU kg–1 diet β-mannanase than fish fed diet control. The ADC, 

cysteine (P = 0.002), glutamic acid (P = 0.001), glycine (P = 0.016), and tyrosine (P = 0.005) 

as well the mean of non-essential amino acids (P = 0.003) were higher than fish in diet control. 

Considering the ADC of non-essential amino acids, aspartic acid (P = 0.001; R2 = 0.531; Ymax. 

= 4880 TMU kg–1 diet β-mannanase), and serine (P = 0.004; R2 = 0.499; Ymax. = 5120 TMU 

kg–1 diet β-mannanase) presented a quadratic distribution. According to Dunnett’s test, the 

ADC aspartic acid (P = 0.001), cysteine (P = 0.001), glutamic acid (P = 0.001), glycine (P = 

0.009), serine (P = 0.001) and mean of non-essential amino acids (P < 0.001) were higher in 

fish fed diet with 1600 to 8000 TMU kg –1 dietary β-mannanase than fish fed diet control. 

Besides, the ADC of tyrosine was significantly higher (P = 0.050) in fish fed diet with 6400 

TMU kg–1 β-mannanase than fish fed diet control. However, the ADC was unaffected by dietary 

treatments, neither by orthogonal polynomials (P = 0.905) nor Dunnett’s test (P = 0.073) 

analysis. 

3.5. Digestible energy and protein 

Figure 2 presents the effects of graded levels of β-mannanase on digestible energy and 

protein contents of diets. A quadratic response was observed for digestible energy (P < 0.001; 

R2 = 0.676; Ymax. = 4286 TMU kg–1 β-mannanase) and digestible protein (P < 0.001; R2 = 0.848; 

Ymax. = 4143 kg–1 diet β-mannanase) contents.  
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Figure 2. Effect of graded levels of β-mannanase on the digestible energy (DE) and digestible 

protein (DP) content of diets fed to juvenile Nile tilapia. Each dot point represents mean value 

of 21 fish as replicate. Orthogonal polynomials were used to evaluate quadratic responses to 

the levels of β-mannanase. Means within a row with asterisks superscripts differ significantly 

from control diet (β-mannanase = 0 TMU kg–1 diet) by Dunnet´s test (P < 0.05). 
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Dunnett’s test showed that the dietary digestible energy contents in fish fed 3200 to 

6400 TMU kg–1 dietary β-mannanase was significantly higher (P < 0.001) than fish fed the 

control diet. Fish fed a diet with 1600 to 6400 TMU kg–1 dietary β-mannanase also significantly 

increased (P < 0.001) the dietary digestible protein content relative to that fish fed the control 

diet. 

3.6. Principal component analysis 

Figure 3 shows the principal component analysis of fish fed the experimental diets 

over eight weeks. Principal component analysis shows the main effects observed in the present 

study and accounts for 61% of the total effects, and the second component 25.7%, respectively. 

The main effects observed in ADC responses were primarily represented by dietary β-

mannanase levels of 0, 1600, 3200 and 4800 TMU kg–1. The control diet was negatively 

correlated with pH and viscosity of feces, and the diets 3200, 4800 and 6400 TMU kg–1 were 

more responsible for the effects on ash content, dry matter, gross energy, crude protein and 

crude lipids of feces (Figure 3A). The gross visualization of the PC analysis score loading plots 

is presented in Figure 3B. 

 

 

 

 

 

 



111 
 

 

 

Figure 3. Principal component analysis (PCA) of score plots of dietary treatments  with graded 

levels of  β-mannanase (A) and loading plots (B) of fecal pH and viscosity and  apparent 

digestibility coefficients of dry matter (DM), gross energy (GE), crude protein (CP), crude 

lipids (CL), ash, essential amino acids (EAA) and non-essential amino acids (NEAA) of Nile 

tilapia fed diets with graded levels of β-mannanase. The figure was constructed using the Bray-

Curtis distance method and represents the distance between samples, a summary of the main 

effects composition. Each point represents the entire treatment in four replicate aquaria. Distant 

points indicate more different influences. 

A negative correlation between digesta pH and viscosity was observed. It has been 

demonstrated herein by the large angles between the variables dry matter, gross energy, crude 

lipid, crude protein, ash, and essential and non-essential amino acids. 
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4. Discussion 

The results of this study support the hypothesis that supplementation of β-mannanase 

can mitigate the antinutritional effects of NSPs in aquafeeds by reducing fecal viscosity, as 

evidenced by the ADCs of energy and nutrients. These results align with previous findings 

demonstrating the positive effects of β-mannanase on digestibility in various fish species, 

primarily due to the reduction of digesta viscosity (Kiarie et al., 2021; Kim et al., 2017; Mok et 

al., 2015). The mechanism by which β-mannanase improves digestibility is primarily attributed 

to reduced fecal viscosity (Castillo and Gatlin, 2015). The digesta viscosity, which affects 

nutrient digestibility, is influenced by the chemical structure and association of NSPs with cell 

wall components and their physical effects on digestion and absorption (Sternemalm et al., 

2008). Furthermore, high viscosity may obstruct the access of digestive enzymes to their 

substrates and create a barrier to nutrient availability by increasing the rate of passage of digesta 

through the digestive tract (Leenhouwers et al., 2006). Another possibility is that increased 

endogenous nutrient losses and the thickness of the layer of unstirred water adjacent to the 

mucosa may be promoted by high digesta viscosity leading to decreased digestion and 

absorption of nutrients (Balasubramanian et al., 2018; Lange, 2000; Leenhouwers et al., 2007a). 

The present study found a reduction in fecal pH in fish fed a diet containing 4800 TMU 

kg−1 β-mannanase. This reduction is attributed to the improved digestibility of NSPs, as 

increased nutrient availability, which drives microbiota fermentation and the production of 

SCFAs, decreasing intestinal pH (Bown et al., 1974; Kihara and Sakata, 1997). Previous 

research has shown that changes in fecal pH within an optimal range result in significant 

changes in gut microbiota composition, as a lower pH reduces the abundance of harmful 

bacteria (Hossain et al., 2019). 

Our research demonstrated the beneficial effects of β-mannanase on energy and 

nutrient digestibility. Our results align with previous studies evaluating the effects of β-
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mannanase in different fish species, which observed improvements in the digestibility of 

energy and nutrients (Caldas et al., 2018; Dawood and Shi, 2022; Leenhouwers et al., 2007a; 

Magalhães et al., 2016). These results might be attributed to the reduction in digesta viscosity, 

which enables the action of digestive enzymes with their respective substrates (Magalhães et 

al., 2016). These results may support a protein-sparing effect, leading to improved growth 

performance (Kim et al., 2017). Concerning crude lipid digestibility, β-mannans modify 

intestinal functions, impairing endogenous secretion of water and lipids (Angkanaporn et al., 

1994). β-mannans can increase bile acid secretion and result in significant loss of bile acids in 

the feces (Ikegami et al., 1990) and may justify increased hepatic synthesis of bile acids from 

cholesterol to restore homeostasis, influencing the absorption of lipids and cholesterol in the 

intestine and causing a drop in blood cholesterol levels (Hossain et al., 2003). Additionally, 

β-mannans can trap bile salts, thus reducing their efficiency in fat solubilization and, 

consequently, impairing lipid absorption (Ebihara and Schneeman, 1989). Furthermore, the 

presence of β-mannans in fish diets is known to reduce the digestibility of protein and amino 

acids (Leenhouwers et al., 2006).  

In the present study, the β-mannanase increased the ADC of ten essential AAs, such 

as arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 

tryptophan, and valine. Additionally, it improved the ADC of six non-essential AAs, such as 

aspartic acid, cysteine, glutamic acid, glycine, serine, and tyrosine. There is no previous 

research evaluating the individual amino acid digestibility with dietary β-mannanase in Nile 

tilapia. Despite that, our results corroborate other studies with broiler, swine, and tilapia, 

showing that mixtures of carbohydrases or enzymatic complexes containing carbohydrases like 

xylanase and β-glucanases increased the ADC of amino acids (de Brito et al., 2021; Ferreira et 

al., 2016; Romero et al., 2013). The mechanism whereby β-mannanase improves the ADC of 

AAs has been attributed to the capacity to reduce fecal viscosity (Castillo and Gatlin, 2015; 
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Maas et al., 2018; Sinha et al., 2011). Additionally, NSPs can increase the endogenous excretion 

of AA due to the high viscosity of feces, which stimulates the endogenous secretion of AA and 

increases mucin production (Angkanaporn et al., 1994). To date, mucin is produced in intestinal 

cells, is composed mainly of threonine, and compromises the digestibility of AA (Pirgozliev et 

al., 2010). Thus, the higher ADC of threonine in the present study suggests that the improved 

ADC of amino acids may be explained by a decrease in the fecal viscosity and reduction in 

mucin production, which allows a more significant contact between enzyme and substrate, 

facilitating protein and amino acids digestibility (de Brito et al., 2021; Ferreira et al., 2016). 

Indeed, dietary amino acids are one of aquafeeds’ most costly ingredients. The exogenous 

dietary β-mannanase has been shown to increase the digestibility of crude protein and amino 

acids, so this research supports future diet formulations based on the ADC values of amino 

acids with the addition of β-mannanase at the levels recommended in the present study. Finally, 

increasing the digestibility of all essential amino acids is of great value since more amino acids 

are available to be absorbed and metabolized, reducing the impairment effects of amino acid 

deficiencies and reducing industrial amino acid additions. Additionally, reducing nitrogen 

excretion in the environment corroborates the activity’s economic and environmental 

sustainability (Furuya et al., 2005; Schaafsma, 2005). 

The present study supports previous findings of improved energy and protein 

digestibility with β-mannanase supplementation in various fish species (Romero et al., 2013; 

Ferreira et al., 2016; Jeon et al., 2019). Accurate estimation of digestible energy is critical to 

formulating less cost-effective diets, considering the effect of β-mannanase on the energy and 

protein content of the diet, especially when diets are deficient in energy relative to protein, 

which reduces growth rate. Further, considering the crucial correlation between digestible 

energy and protein in diets with β-mannanase is essential for the optimization of feed utilization 
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The results of the PC analysis in the present study indicated the impact of graded levels 

of β-mannanase in the diet on fecal viscosity and pH, ADCs of energy and nutrients, and 

digestible energy and protein in juvenile Nile tilapia. The findings showed a strong negative 

correlation between pH and viscosity with the ADC of dry matter, gross energy, crude protein, 

crude lipids, ash, essential and non-essential amino acids, and digestible energy and protein. 

This correlation supports the previous studies that evaluated the effects of β-mannanase in 

several species (Dawood et al., 2022). These findings underscore the importance of including 

β-mannanase, a carbohydrase, in the diet of juvenile Nile tilapia to reduce digesta and feces 

viscosity and improve the digestive process. However, it is crucial to determine the optimal 

level of β-mannanase addition since varying levels had differing effects on the fish in the 

present study. 

Overall, this study evaluated the potential of supplementing tilapia aquafeeds with β-

mannanase in NSPs-rich diets. The results indicate that β-mannanase may mitigate the adverse 

effects of NSPs on nutrient digestibility in juvenile Nile tilapia. Additionally, this approach has 

the potential to reduce feeding costs and optimize tilapia farm operations through the use of 

sustainable alternative feedstuffs in industrial-scale production. The study provides novel 

evidence that exogenous supplementation of β-mannanase may be a practical strategy to 

improve the nutritive value of economic and environmental sustainability with plant sources in 

juvenile Nile tilapia feeds. 

 

5. Conclusions 

The inclusion of liquid β-mannanase at a concentration of 4800 TMU kg−1 in the diet 

of juvenile Nile tilapia resulted in a reduction of fecal pH and viscosity. This reduction led to 

an optimization of energy and nutrient digestibility, including amino acids. Furthermore, the 

addition of 4800 TMU kg−1 of β-mannanase to the diet improved the dietary contents of DE 
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and DP. This study demonstrates that the inclusion of liquid β-mannanase at a concentration of 

4800 TMU kg−1 is a useful nutritional tool, effectively improving the nutritive values of plant-

based diets for precision feeding of Nile tilapia. 
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CONCLUSIONS AND IMPLICATIONS 

 

 

 

 

Recent research in aquaculture nutrition has focused on replacing fishmeal, a limited 

and expensive protein source, with plant-based alternatives to sustain the growing aquaculture 

sector and align with sustainability goals. To achieve this, using vegetable-based feed 

ingredients such as soybean meal is crucial in creating practical diets for Nile tilapia. However, 

mannans, a non-starch polysaccharide in soybean meal, can negatively impact fish growth and 

feed efficiency. It is therefore important to investigate methods to minimize the effects of 

mannans, such as adding exogenous enzymes, to create precise and sustainable diets that meet 

fish nutritional requirements. β-mannanase is an important exogenous enzyme in aquaculture 

and fish nutrition, breaking down β-mannan bonds to reduce digesta viscosity, increasing the 

accessibility of digestive enzymes to substrates, and elevating nutrient availability for 

absorption and metabolism. The present study demonstrates that β-mannanase at 4800 TMU 

kg−1 diet enhanced performance parameters such as body weight gain, feed efficiency, protein, 

and energy retention efficiency in juvenile Nile tilapia, supported by increased apparent 

digestibility coefficients of energy and nutrients, including amino acids. The increase in nutrient 

availability also leads to improved intestinal morphology, resulting from changes in short-chain 

fatty acid production by beneficial bacteria in the gut microbiome. Microbiome analysis 

presents a novel approach to examining nutritional interventions' effects on Nile tilapia bacteria 

populations. It has the potential to enhance gut health, nutrient utilization, and growth 
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performance in aquaculture. These results highlight the significance of considering the gut 

microbiome in creating sustainable and precise nutrition for tilapia farming. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 



125 
 

 

 

Appendix A. Illustration n of the experimental recirculation aquaculture system – RAS (A), 

fish utilized (B) and extruded diet (C) emplloyed in the growth and digestibility assay. 

 

 

Appendix B. Illustration of the feeding allowance (A) and feces collection management (B; C) 

management employed in the growth and digestibility assay. 
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Appendix C. Illustration of the digesta viscosity in fish fed the control diet without (A1) or 

with 4800 TMU kg−1 β-mannanase (A2), centrifugation of feces to obtain the supernatant for 

determining the digesta viscosity (B, C), and the viscosity analysis performed using a 

Brookfield Digital Viscometer (D), in the growth and digestibility assay. 

 

 

Appendix D. Illustrations showing the fish dissection (A), the collection of visceral fat and 

liver contents (B), and an overview of the sample collection process (C) of visceral fat and liver. 
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Appendix E. Illustrations showing the collection of digesta for short-chain fatty acids and 

microbiome analysis (A), the collection of a middle intestine portion for morphological analysis 

(B), and the preservation of samples for short-chain fatty acids and microbiome analysis by 

freezing in liquid nitrogen (C). 


