

PROGRAMA DE INTEGRAÇÃO ESTUDANTIL - PROINTE

SIGLA	QUIAG	
DISCIPLINA	QUÍMICA APLICADA	
CURSO	AGRONOMIA	

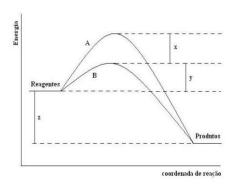
LISTA 04 – Cinética Química (Cap. 14)

- 1) A velocidade de uma reação pode ser influenciada por meio de alguns fatores, sendo assim, responda qual o fator envolvido em cada situação e explique o que acontece a nível molecular:
- a) Porque se coloca o leite na geladeira?
- **b**) Porque quando se adiciona um catalisador a uma reação química a velocidade aumenta?
- c) Porque o pó de serra queima mais fácil do que a madeira maciça?
- 2) A decomposição do N₂O₅ se faz de acordo com a equação

$$2\;N_2O_{5(g)} \;\;\to\;\; 4NO_{2(g)} \;\;+\;\;\; O_{2(g)}$$

Se a velocidade de decomposição de N_2O_5 num certo instante, num vaso reacional de volume constante, for 4,2 x 10^{-4} mol/L s, qual a velocidade de formação **A**) NO_2 ; **B**) O_2 ?

- 3) Uma reação segue a seguinte lei de velocidade: $v = k[A] \cdot [B]^2$.
- a) Se houver alteração de [A] haverá alteração da velocidade? Haverá alteração da constante de velocidade (k)? Explique.
- **b**) Se a concentração de B for duplicada, mantendo a concentração de A constante, a velocidade aumentará de quanto?
- ${f c}$) Qual a ordem da reação em relação a A? e em relação a B? Qual a ordem global da reação?
- **d)** Que unidades tem a constante de velocidade?


4) Os seguintes dados de velocidade inicial (V_o) foram obtidos sobre o consumo de NO na reação

$$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$$
:

Experiência	[NO] (mol/L)	[O ₂] (mol/L)	V ₀ (mol/Ls)
1	0,0126	0,0125	1,41 x 10 ⁻²
2	0,0252	0,0250	1,13 x 10 ⁻¹
3	0,0252	0,0125	5,64 x 10 ⁻²

- a) Qual a lei de velocidade da reação?
- **b)** Qual o valor da constante de velocidade?
- **5**) Uma determinada reação de decomposição de um fármaco segue cinética de primeira ordem. Uma concentração inicial de 0,050 mol L⁻¹ reduz-se a 80% deste valor em 5 min. Qual a constante de velocidade e qual o tempo de meia-vida?
- 6) Um dessecante foi aplicado sobre uma lavoura, de forma que a quantidade média de produto adsorvida em cada planta é equivalente a uma concentração de 2,7 x 10^{-3} mol L^{-1} . Sabendo que a cinética de degradação desse produto depois de aplicado é de primeira ordem ($k_1 = 0,1066 \, \text{dia}^{-1}$), calcule o tempo de meia-vida.
- 7) A lagarta do cartucho é a principal praga da cultura do milho no Brasil, ocorrendo tanto nos cultivos de verão como na safrinha. O inseto ataca a planta desde sua emergência até a formação de espigas, com prejuízos anuais estimados em US\$ 400 milhões. Um trabalho conjunto entre departamentos da UEM possibilitou o desenvolvimento de um novo pesticida que elimina a lagarta sem gerar grandes efeitos de toxicidade no grão após a colheita. A pulverização recomendada leva a adsorção média em cada planta de um equivalente/ concentração de 7,6 x 10^{-3} mol L^{-1} . Sendo que a cinética de degradação do produto é de segunda ordem ($k_2 = 65,8 \text{ mol}^{-1} \text{ L dia}^{-1}$), e que o equivalente/concentração mínimo efetivo contra a lagarta é de 9,5 x 10^{-4} mol L^{-1} , calcule o intervalo de tempo entre a primeira e a segunda aplicação.
- 8) Com base nas energias de ativação, qual, entre as reações seguintes, seria a mais rápida e qual a mais lenta. a) $E_a = 30 \text{ kJ/mol}$; b) $E_a = 45 \text{ kJ/mol}$; c) $E_a = 20 \text{ kJ/mol}$. Justifique sua resposta.

- **9)** Para a reação de hidrogênio com iodo, a constante de velocidade vale $2,45 \times 10^{-4} \text{ L mol}^{-1}\text{s}^{-1}$ a 302 °C e $0,950 \text{ L mol}^{-1}\text{s}^{-1}$ a 508 °C.
- a) Calcule a energia de ativação e o fator de frequência para esta reação.
- **b)** Qual é o valor da constante de velocidade a 400 °C.
- **10**) (**Unioeste adaptado**) Atualmente, na indústria química, a utilização de catalisadores é de grande importância, devido principalmente à redução do tempo de reação e dos custos de produção. O diagrama abaixo representa a variação de energia de uma reação qualquer na presença e na ausência de catalisador.

Pela análise do diagrama, pode-se afirmar:

- (A) A reação é endotérmica.
- (B) A curva B representa a reação sem catalisador.
- (C) O valor x+y representa a energia de ativação (Ea) do processo não catalisado.
- (D) O valor z representa a energia de ativação (Ea) do processo catalisado.
- (E) A energia de ativação do processo catalisado corresponde ao valor x-y.